Synaptic connections from large afferents of wrist flexor and extensor muscles to synergistic motoneurones in man. 1997

G R Chalmers, and P Bawa
School of Kinesiology, Simon Fraser University, Burnaby, B.C., Canada.

Short-latency excitatory Ia reflex connections were determined between pairs of human wrist flexor and extensor muscles. Spindle Ia afferents were stimulated by either tendon tap or electrical stimulation. The activity of voluntarily activated single motor units was recorded intramuscularly from pairs of wrist flexor or extensor muscles. Cross-correlation between stimuli and the discharge of the motor units provided a measure of the homonymous or heteronymous excitatory input to a motoneurone. Homonymous motoneurone facilitation was generally stronger than that of the heteronymous motoneurones. The principal wrist flexors, flexor carpi radialis (FCR) and flexor carpi ulnaris (FCU), were tightly connected through a bidirectional short-latency reflex pathway. In contrast, the extensor carpi ulnaris (ECU) and the extensor carpi radialis (ECR) did not have similar connections. ECU motoneurones received no short-latency excitatory Ia input from the ECR. ECR motoneurones did receive excitatory Ia input from ECU Ia afferents; however, its latency was delayed by several milliseconds compared with other heteronymous Ia excitatory effects observed. The wrist and finger extensors were linked through heteronymous Ia excitatory reflexes. The reflex connections observed in humans are largely similar to those observed in the cat, with the exception of heteronymous effects from the ECU to the ECR and from the extensor digitorum communis (EDC) to the ECU, which are present only in humans. The differences in the reflex organization of the wrist flexors versus the extensors probably reflects the importance of grasping.

UI MeSH Term Description Entries
D008297 Male Males
D008475 Median Nerve A major nerve of the upper extremity. In humans, the fibers of the median nerve originate in the lower cervical and upper thoracic spinal cord (usually C6 to T1), travel via the brachial plexus, and supply sensory and motor innervation to parts of the forearm and hand. Median Nerves,Nerve, Median,Nerves, Median
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009470 Muscle Spindles Skeletal muscle structures that function as the MECHANORECEPTORS responsible for the stretch or myotactic reflex (REFLEX, STRETCH). They are composed of a bundle of encapsulated SKELETAL MUSCLE FIBERS, i.e., the intrafusal fibers (nuclear bag 1 fibers, nuclear bag 2 fibers, and nuclear chain fibers) innervated by SENSORY NEURONS. Muscle Stretch Receptors,Neuromuscular Spindles,Receptors, Stretch, Muscle,Stretch Receptors, Muscle,Muscle Spindle,Muscle Stretch Receptor,Neuromuscular Spindle,Receptor, Muscle Stretch,Receptors, Muscle Stretch,Spindle, Muscle,Spindle, Neuromuscular,Spindles, Muscle,Spindles, Neuromuscular,Stretch Receptor, Muscle
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012023 Reflex, Monosynaptic A reflex in which the AFFERENT NEURONS synapse directly on the EFFERENT NEURONS, without any INTERCALATED NEURONS. (Lockard, Desk Reference for Neuroscience, 2nd ed.) Monosynaptic Reflex
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

G R Chalmers, and P Bawa
January 2003, Electromyography and clinical neurophysiology,
G R Chalmers, and P Bawa
January 1984, Experimental brain research,
G R Chalmers, and P Bawa
March 1990, The Journal of hand surgery,
G R Chalmers, and P Bawa
August 1978, Journal of neurology, neurosurgery, and psychiatry,
G R Chalmers, and P Bawa
November 1987, Journal of neurophysiology,
Copied contents to your clipboard!