Salmonellae activate tumor necrosis factor alpha production in a human promonocytic cell line via a released polypeptide. 1997

F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
Department of Microbiology and Immunology, Wake Forest University Medical Center, Winston-Salem, North Carolina 27157, USA.

Invasive strains of Salmonella spp. cause both systemic and localized infections in humans. The ability to resist infection and some aspects of the tissue pathology associated with the presence of Salmonella in the gastrointestinal tract have been shown to be mediated in part by the induction of tumor necrosis factor alpha (TNF-alpha), a proinflammatory cytokine produced by activated macrophages and lymphocytes. Recent reports indicate that TNF-alpha is involved in the induction of human immunodeficiency virus replication by Salmonella in the latently infected human promonocytic cell line U1. In the present study, we investigated the effects of Salmonella on TNF-alpha production in U1 cells and a related cell line, U38. Unlike Escherichia coli or Yersinia enterocolitica, salmonellae rapidly induce TNF-alpha expression in these cells through a released factor(s). Time course experiments show that the kinetics of TNF-alpha production by U38 cells stimulated with Salmonella conditioned medium closely resemble those observed in response to live Salmonella. The observation that TNF-alpha levels are elevated by 60 min after exposure to either bacteria or their conditioned medium suggests that the soluble inducer is continuously released or shed by the bacteria and that the signal acts rapidly to increase TNF-alpha production. Furthermore, the ability to produce the TNF-alpha inducer is shared by at least four Salmonella serotypes and does not correlate with the abilities to invade and to survive within phagocytes. Treatment of active conditioned medium with trypsin, but not low pH, high temperature, or urea, significantly inhibits its TNF-alpha-inducing effect on U38 cells, a finding which points to a polypeptide product of Salmonella as the mediator of TNF-alpha production. Gel filtration chromatography of Salmonella conditioned medium reveals two peaks of activity, consistent with molecular masses of approximately 150 and 110 kDa.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012475 Salmonella A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria that utilizes citrate as a sole carbon source. It is pathogenic for humans, causing enteric fevers, gastroenteritis, and bacteremia. Food poisoning is the most common clinical manifestation. Organisms within this genus are separated on the basis of antigenic characteristics, sugar fermentation patterns, and bacteriophage susceptibility.
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
March 1998, Infection and immunity,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
June 1993, AIDS research and human retroviruses,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
June 1995, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
November 1992, Journal of neuroimmunology,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
May 1994, Biochemical and biophysical research communications,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
March 2000, Toxicology,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
January 1999, Microbiology and immunology,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
April 1991, Journal of immunology (Baltimore, Md. : 1950),
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
January 1997, International journal of clinical & laboratory research,
F Ciacci-Woolwine, and L S Kucera, and S H Richardson, and N P Iyer, and S B Mizel
July 1994, The Laryngoscope,
Copied contents to your clipboard!