Drug metabolism in hepatocyte sandwich cultures of rats and humans. 1997

A Kern, and A Bader, and R Pichlmayr, and K F Sewing
Drug Metabolism, Bayer AG, Wuppertal, Germany.

Adult hepatocytes from rat and man were maintained for 2 weeks between two gel layers in a sandwich configuration to study the influence of this culture technique on the preservation of basal activities of xenobiotic-metabolizing phase I and phase II enzymes. The response of these enzyme activities to an enzyme inducer was investigated using rifampicin (RIF). Basal levels of cytochrome P-450 (CYP) isozymes were characterized by measuring ethoxyresorufin O-deethylation (EROD), ethoxycoumarin O-deethylation (ECOD), and the specific oxidation of testosterone (T). In hepatocytes from untreated rats, CYP isozyme levels, including the major form CYP 2C11, increased during the first 3 days in culture. After this period of recovery, the levels of CYP 2C11, CYP 2A1, and CYP 2B1 decreased, whereas CYP 3A1 increased. In contrast to these dynamic changes, CYP activities such as CYP 1A2 and the major isozyme CYP 3A4 were largely preserved until day 9 in cultures of human hepatocytes. In measuring phase II activities, a distinct increase in glucuronosyltransferase (UDP-GT) activity toward p-nitrophenol (PNP) was found for rat and human hepatocytes over 2 weeks in culture. Sulfotransferase (ST) activity toward PNP showed an initial increase, with a maximum at day 7 and day 9 in culture, respectively, and then decreased until day 14. Glutathione S-transferase (GST) activity decreased constantly during the time of culture. Effects of the enzyme-inducing drug rifampicin on phase I and phase II enzymes were investigated using cultured human hepatocytes. Rifampicin treatment (50 micromol/L) for 7 days resulted in a 3.7-fold induction of CYP 3A4 at day 9 in culture. ECOD activity was increased sixfold and phase II ST activity increased twofold compared to the initial value at day 3. No effect of rifampicin on CYP 3A was found in cultures of rat hepatocytes. These results demonstrate that rat and human hepatocytes preserve the major forms of CYP isozymes and phase II activities and respond to inducing drugs such as rifampicin. The novel hepatocyte sandwich culture is suitable for investigating drug metabolism, drug-drug interactions and enzyme induction.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly

Related Publications

A Kern, and A Bader, and R Pichlmayr, and K F Sewing
January 2006, Methods in molecular biology (Clifton, N.J.),
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
January 2006, Methods in molecular biology (Clifton, N.J.),
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
October 2015, Archives of toxicology,
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
January 1998, Methods in molecular biology (Clifton, N.J.),
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
January 2006, Methods in molecular biology (Clifton, N.J.),
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
October 1993, Toxicology,
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
August 2004, Journal of veterinary pharmacology and therapeutics,
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
February 2013, Current protocols in toxicology,
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
February 2001, European journal of biochemistry,
A Kern, and A Bader, and R Pichlmayr, and K F Sewing
December 2010, Journal of nanobiotechnology,
Copied contents to your clipboard!