Apoptosis in haemopoietic progenitor cells exposed to extremely low-frequency magnetic fields. 1997

B M Reipert, and D Allan, and S Reipert, and T M Dexter
Cancer Research Campaign Department of Physics & Instrumentation, Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Manchester, UK.

Epidemiological studies have indicated a modestly increased risk for the development of acute myeloid leukaemia in children who live close to high-voltage power-lines. Recent evidence has suggested that a common property shared by a number of known and suspected tumour promoters is their ability to block the process of apoptosis. Therefore, one possible mechanistic explanation for the apparent leukaemogenic effect of weak, low-frequency magnetic fields, such as emitted by power-lines and electrical appliances, would be their expression of tumour-promoting activity by interfering with the regulation of apoptosis in multipotent haemopoietic progenitor cells. In order to test this hypothesis, we have employed the well-characterized multipotential haemopoietic progenitor cell line FDCP-mix(A4). These cells are non-leukaemic and undergo apoptosis when deprived of appropriate growth factors such as Interleukin-3. We have tested a series of different regimes of weak, low-frequency magnetic fields: nulled fields, Ca2+-ion cyclotron resonance conditions at 50 Hz, and vertical 50 Hz fields of 6 microT(RMS), 1 mT(RMS) and 2 mT(RMS), exposing the cells for 2 hours, 24 hours, 4 days or 7 days under various culture conditions. We have not seen any significant alteration in apoptosis induced by any of the exposure regimes tested. We therefore conclude that the regulation of viability and apoptosis in FDCP-mix(A4) cells is not disturbed by weak magnetic fields of the magnitude and type indicated.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004574 Electromagnetic Fields Fields representing the joint interplay of electric and magnetic forces. Electromagnetic Field,Field, Electromagnetic,Fields, Electromagnetic
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

B M Reipert, and D Allan, and S Reipert, and T M Dexter
October 2021, Cell and tissue research,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
March 2005, Free radical research,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
January 2005, International journal of radiation biology,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
January 1998, Bioelectromagnetics,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
December 2012, Mutation research,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
July 2016, Bioelectromagnetics,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
June 1992, Radiation research,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
February 2008, Bioelectromagnetics,
B M Reipert, and D Allan, and S Reipert, and T M Dexter
January 1992, Bioelectromagnetics,
Copied contents to your clipboard!