Crystal structure of the I domain from integrin alpha2beta1. 1997

J Emsley, and S L King, and J M Bergelson, and R C Liddington
Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom.

We have determined the high resolution crystal structure of the I domain from the alpha-subunit of the integrin alpha2beta1, a cell surface adhesion receptor for collagen and the human pathogen echovirus-1. The domain, as expected, adopts the dinucleotide-binding fold, and contains a metal ion-dependent adhesion site motif with bound Mg2+ at the top of the beta-sheet. Comparison with the crystal structures of the leukocyte integrin I domains reveals a new helix (the C-helix) protruding from the metal ion-dependent adhesion site face of the domain which creates a groove centered on the magnesium ion. Modeling of a collagen triple helix into the groove suggests that a glutamic acid side chain from collagen can coordinate the metal ion, and that the C-helix insert is a major determinant of binding specificity. The binding site for echovirus-1 maps to a distinct surface of the alpha2-I domain (one edge of the beta-sheet), consistent with data showing that virus and collagen binding occur by different mechanisms. Comparison with the homologous von Willebrand factor A3 domain, which also binds collagen, suggests that the two domains bind collagen in different ways.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D016023 Integrins A family of transmembrane glycoproteins (MEMBRANE GLYCOPROTEINS) consisting of noncovalent heterodimers. They interact with a wide variety of ligands including EXTRACELLULAR MATRIX PROTEINS; COMPLEMENT, and other cells, while their intracellular domains interact with the CYTOSKELETON. The integrins consist of at least three identified families: the cytoadhesin receptors (RECEPTORS, CYTOADHESIN), the leukocyte adhesion receptors (RECEPTORS, LEUKOCYTE ADHESION), and the VERY LATE ANTIGEN RECEPTORS. Each family contains a common beta-subunit (INTEGRIN BETA CHAINS) combined with one or more distinct alpha-subunits (INTEGRIN ALPHA CHAINS). These receptors participate in cell-matrix and cell-cell adhesion in many physiologically important processes, including embryological development; HEMOSTASIS; THROMBOSIS; WOUND HEALING; immune and nonimmune defense mechanisms; and oncogenic transformation. Integrin

Related Publications

J Emsley, and S L King, and J M Bergelson, and R C Liddington
June 1999, FEBS letters,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
August 2004, Journal of molecular biology,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
August 2005, The Journal of biological chemistry,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
January 2004, Journal of molecular biology,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
October 1995, Proceedings of the National Academy of Sciences of the United States of America,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
April 2009, Journal of molecular biology,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
September 2004, The Journal of biological chemistry,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
April 2003, Journal of molecular biology,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
February 1995, Cell,
J Emsley, and S L King, and J M Bergelson, and R C Liddington
May 2024, Biochemical and biophysical research communications,
Copied contents to your clipboard!