Functional and genetic characterization of mcpC, which encodes a third methyl-accepting chemotaxis protein in Bacillus subtilis. 1997

Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
Department of Microbiology, Technical University of Denmark, Bldg 301, DK-2800 Lyngby, Denmark.

A 3135 bp DNA segment downstream of the spl gene on the Bacillus subtilis chromosome was cloned and its nucleotide sequence determined. An open reading frame capable of encoding a putative protein of 654 amino acids with a calculated molecular mass of 72.1 kDa was identified. The deduced amino acid sequence was similar to the McpA and McpB proteins of B. subtilis. McpA and McpB encode different methyl-accepting chemotaxis proteins (MCPs). A mutant strain containing an antibiotic resistance DNA cassette inserted into the region containing the MCP-like reading frame suffered a complete loss of taxis to the amino acids cysteine, proline, threonine, glycine, serine, lysine, valine and arginine. The open reading frame was designated mcpC. The wild-type and an mcpC mutant strain were analysed for their content of methylated proteins and it was found that mcpC encodes a methylated membrane protein that has previously been designated H3. These results show that mcpC encodes a third MCP in B. subtilis. The transcription start site upstream of the mcpC gene was determined by primer extension analysis and it was found to be preceded by a potential promoter sequence that is recognized by the sigma D form of RNA polymerase. The level of beta-galactosidase expressed from a transcriptional mcpC-lacZ fusion was increased threefold when cells entered the stationary phase. No beta-galactosidase could be detected in a sigD genetic background.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000072236 Methyl-Accepting Chemotaxis Proteins Transmembrane sensor receptor proteins that are central components of the chemotactic systems of a number of motile bacterial species which include ESCHERICHIA COLI and SALMONELLA TYPHIMURIUM. Methyl-accepting chemotaxis proteins derive their name from a sensory adaptation process which involves methylation at several glutamyl residues in their cytoplasmic domain. Methyl-accepting chemotaxis proteins trigger chemotactic responses across spatial chemical gradients, causing organisms to move either toward favorable stimuli or away from toxic ones. Methyl-Accepting Chemotaxis Protein,MACP-I,MACP-II,Methyl Accepting Chemotaxis Protein 1,Methyl Accepting Chemotaxis Protein 2,Methyl Accepting Chemotaxis Protein 3,Methyl-Accepting Chemotaxis Protein I,Methyl-Accepting Chemotaxis Protein II,Methyl-Accepting Chemotaxis Protein III,Chemotaxis Protein, Methyl-Accepting,Chemotaxis Proteins, Methyl-Accepting,Methyl Accepting Chemotaxis Protein,Methyl Accepting Chemotaxis Protein I,Methyl Accepting Chemotaxis Protein II,Methyl Accepting Chemotaxis Protein III,Methyl Accepting Chemotaxis Proteins,Protein, Methyl-Accepting Chemotaxis,Proteins, Methyl-Accepting Chemotaxis
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
July 1982, The Journal of biological chemistry,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
December 1981, The Biochemical journal,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
May 1994, The Journal of biological chemistry,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
February 1990, The Journal of biological chemistry,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
November 1993, Biochimica et biophysica acta,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
September 1983, The Biochemical journal,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
June 1984, Biochemistry,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
January 1988, Journal of bacteriology,
Jakob Müller, and Stacey Schiel, and George W Ordal, and Hans H Saxild
November 1988, Biochemistry,
Copied contents to your clipboard!