Sunlight induces pyrimidine dimers preferentially at 5-methylcytosine bases. 1997

S Tommasi, and M F Denissenko, and G P Pfeifer
Department of Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA.

The most prevalent DNA lesion induced by UV irradiation is the cyclobutane pyrimidine dimer (CPD), which forms at positions of neighboring pyrimidines. Here we show that the rare DNA base 5-methylcytosine is the preferred target for CPD formation when cells are irradiated with natural sunlight. We have mapped the distribution of CPDs formed in normal human keratinocytes along exons of the p53 gene. Codons 196, 245, 248, and 282, which are mutational hot spots in skin cancers, are only weakly to moderately susceptible to formation of CPDs after irradiation with UVC (254 nm) or UVB (320 nm) light sources. However, when cells were exposed to natural sunlight, CPD formation was enhanced up to 15-fold at these codons due to the presence of 5-methylcytosine bases. These results suggest that CPDs containing 5-methylcytosine may play an important role in formation of sunlight-induced skin tumors and that methylation of CpG sequences, besides being involved in spontaneous mutagenesis processes, can also create preferential targets for environmental mutagens and carcinogens.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009381 Neoplasms, Radiation-Induced Tumors, cancer or other neoplasms produced by exposure to ionizing or non-ionizing radiation. Radiation-Induced Cancer,Cancer, Radiation-Induced,Radiation-Induced Neoplasms,Cancer, Radiation Induced,Cancers, Radiation-Induced,Neoplasm, Radiation-Induced,Neoplasms, Radiation Induced,Radiation Induced Cancer,Radiation Induced Neoplasms,Radiation-Induced Cancers,Radiation-Induced Neoplasm
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D003596 Cytosine A pyrimidine base that is a fundamental unit of nucleic acids.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D013472 Sunlight Irradiation directly from the sun. Sunshine
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte

Related Publications

S Tommasi, and M F Denissenko, and G P Pfeifer
March 2020, Journal of molecular biology,
S Tommasi, and M F Denissenko, and G P Pfeifer
October 1970, Nature,
S Tommasi, and M F Denissenko, and G P Pfeifer
October 1999, Journal of molecular biology,
S Tommasi, and M F Denissenko, and G P Pfeifer
May 1973, International journal of radiation biology and related studies in physics, chemistry, and medicine,
S Tommasi, and M F Denissenko, and G P Pfeifer
August 2013, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology,
S Tommasi, and M F Denissenko, and G P Pfeifer
May 2014, Nucleic acids research,
S Tommasi, and M F Denissenko, and G P Pfeifer
October 2016, BioEssays : news and reviews in molecular, cellular and developmental biology,
S Tommasi, and M F Denissenko, and G P Pfeifer
January 2018, Frontiers in genetics,
Copied contents to your clipboard!