Chloroform mode of action: implications for cancer risk assessment. 1997

R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
Environmental Risk Sciences, Inc., 1000 Thomas Jefferson Street, N.W., Washington, DC 20007, USA.

Risk assessment methodology, particularly pertaining to potential human carcinogenic risks from exposures to environmental chemicals, is undergoing intense scrutiny from scientists, regulators, and legislators. The current practice of estimating human cancer risk is based almost exclusively on extrapolating the results of chronic, high-dose studies in rodents to estimate potential risk in humans. However, many scientists are questioning whether the logic used in this current risk assessment methodology is the best way to safeguard public health. A major tool of human cancer risk assessment is the linearized multistage (LMS) model. The LMS model has been identified as an aspect of risk assessment that could be improved. One way to facilitate this improvement is by developing a way to incorporate a carefully derived, more biologically relevant mechanism of action data on carcinogenesis. Recent data on chloroform indicate that the dose-response relationship for chloroform-induced tumors in rats and mice is nonlinear, based upon events secondary to cell necrosis and subsequent regeneration as the likely mode of action for the carcinogenic effects of chloroform. In light of these data, there is a sound scientific basis for removing some of the uncertainty that accompanies current cancer risk assessments of chloroform. The following points summarize the critical data: (1) a substantial body of data demonstrates a lack of direct in vivo or in vitro genotoxicity of chloroform; (2) chloroform induces liver and kidney tumors in long-term rodent cancer bioassays only at doses that induce frank toxicity at these target sites; (3) the chloroform doses required to produce tumors in susceptible species exceed the MTD, often by a considerable margin; (4) cytotoxicity and compensatory cell proliferation are associated with the chloroform doses required to induce liver or kidney tumors in susceptible rodent species; (5) there are no instances of chloroform-induced tumors that are not preceded by this pattern of dose-dependent toxic responses; (6) it is biologically plausible that cytolethality leads to chronically stimulated cell proliferation and related events such as inflammation and growth stimulation which act to initiate and promote the carcinogenic process; and (7) the consistently linked cellular events of cytolethality and subsequent cell proliferation, for which doses of no adverse effect have been clearly shown to exist, are one of the biological prerequisites for chloroform-induced tumors in animals. Based on these data, it is inappropriate to extrapolate cancer risk from high doses that produce necrosis and regenerative cell proliferation to low doses that do not with a model that presumes genotoxicity and a linear dose-response relationship. The weight of the scientific evidence concerning chloroform-induced tumors in rodents is consistent with and supports a cancer risk assessment methodology based on mode of action as the basis for establishing regulatory standards for this compound.

UI MeSH Term Description Entries
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008297 Male Males
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D011634 Public Health Branch of medicine concerned with the prevention and control of disease and disability, and the promotion of physical and mental health of the population on the international, national, state, or municipal level. Community Health,Environment, Preventive Medicine & Public Health,Environment, Preventive Medicine and Public Health,Health, Community,Health, Public
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002725 Chloroform A commonly used laboratory solvent. It was previously used as an anesthetic, but was banned from use in the U.S. due to its suspected carcinogenicity. Trichloromethane
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
January 1997, Toxicologic pathology,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
December 2007, Risk analysis : an official publication of the Society for Risk Analysis,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
April 2016, Regulatory toxicology and pharmacology : RTP,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
March 2008, Environmental and molecular mutagenesis,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
August 2008, Toxicology letters,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
December 2004, Toxicology and applied pharmacology,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
March 1996, Fundamental and applied toxicology : official journal of the Society of Toxicology,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
May 2006, Dose-response : a publication of International Hormesis Society,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
March 2014, Nature reviews. Endocrinology,
R J Golden, and S E Holm, and D E Robinson, and P H Julkunen, and E A Reese
June 2020, Archives of toxicology,
Copied contents to your clipboard!