Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. 1997

S I Itazawa, and T Isa, and S Ozawa
Department of Physiology, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371.

Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. J. Neurophysiol. 78: 2592-2605, 1997. Current-voltage (I-V) relations and Ca2+ permeability of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)type glutamate receptor channels were investigated in neurons of rat neocortex by using the whole cell patch-clamp technique in brain slices. To activate AMPA receptor channels, kainate was used as a nondesensitizing agonist. A patch pipette was filled with solution containing 100 mu M spermine to maintain the inward rectification of Ca2+-permeable AMPA receptor channels. Three types of responses to kainate were observed: type I response with outwardly rectifying I-V relation, type II response with I-V relation of marked inward rectification, and intermediate response with I-V relation of weaker inward rectification. Neurons with type I, type II and intermediate I-V relations were referred to as type I, type II, and intermediate neurons, respectively. Of a total of 223 recorded cells, 90 (40.4%) were type I, 129 (57.8%) intermediate, and 4 (1.8%) type II neurons. Properties of AMPA receptor channels were examined in the former two types of neurons. The value of PCa:PCs, the ratio of the permeability coefficients of Ca2+ and Cs+, was estimated from the reversal potentials of kainate responses in the outside-out patches bathed in Na+-free solution containing 100 mM Ca2+ according to the constant-field equation. They ranged from 0.05 to 0.10 (0.08 +/- 0. 02, mean +/- SD, n = 8) for type I neurons and from 0.14 to 1.29 (0. 60 +/- 0.37, n = 11) for the intermediate neurons. There was a close correlation between the inward rectification and the Ca2+ permeability in AMPA receptor channels in these neurons. Intermediate neurons stained with biocytin were nonpyramidal cells with ellipsoidal-shaped somata. Type I neurons had either triangular- or ellipsoidal-shaped somata. Excitatory postsynaptic currents (EPSCs) recorded in both type I and intermediate neurons had 6-cyano-7-nitroquinoxaline-2,3-dione-sensitive fast and -2-amino-5-phosphonovalerate-sensitiveslow components. The I-V relation of the fast component exhibited inward rectification in the intermediate neuron, whereas that in the type I neuron showed slight outward rectification. The fast component of EPSCs in the intermediate neuron was suppressed more prominently (to 56 +/- 15% of the control, n = 12) than that in the type I neuron (to 78 +/- 6% of the control, n = 6) by bath application of 1 mM spermine. These results indicate that inwardly rectifying and Ca2+-permeable AMPA receptor channels are expressed in a population of neurons of rat neocortex and are involved in excitatory synaptic transmission.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009778 Occipital Lobe Posterior portion of the CEREBRAL HEMISPHERES responsible for processing visual sensory information. It is located posterior to the parieto-occipital sulcus and extends to the preoccipital notch. Annectant Gyrus,Calcarine Fissure,Calcarine Sulcus,Cuneate Lobule,Cuneus,Cuneus Cortex,Cuneus Gyrus,Gyrus Lingualis,Lingual Gyrus,Lunate Sulcus,Medial Occipitotemporal Gyrus,Occipital Cortex,Occipital Gyrus,Occipital Region,Occipital Sulcus,Sulcus Calcarinus,Calcarine Fissures,Calcarinus, Sulcus,Cortex, Cuneus,Cortex, Occipital,Cortices, Cuneus,Cortices, Occipital,Cuneate Lobules,Cuneus Cortices,Fissure, Calcarine,Fissures, Calcarine,Gyrus Linguali,Gyrus, Annectant,Gyrus, Cuneus,Gyrus, Lingual,Gyrus, Medial Occipitotemporal,Gyrus, Occipital,Linguali, Gyrus,Lingualis, Gyrus,Lobe, Occipital,Lobes, Occipital,Lobule, Cuneate,Lobules, Cuneate,Occipital Cortices,Occipital Lobes,Occipital Regions,Occipitotemporal Gyrus, Medial,Region, Occipital,Regions, Occipital,Sulcus, Calcarine,Sulcus, Lunate,Sulcus, Occipital
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one

Related Publications

S I Itazawa, and T Isa, and S Ozawa
November 1998, The Journal of general physiology,
S I Itazawa, and T Isa, and S Ozawa
November 2003, Neuroscience letters,
S I Itazawa, and T Isa, and S Ozawa
March 1999, Brain research. Molecular brain research,
S I Itazawa, and T Isa, and S Ozawa
June 2003, The Journal of physiology,
S I Itazawa, and T Isa, and S Ozawa
November 2011, Neurochemistry international,
S I Itazawa, and T Isa, and S Ozawa
May 2009, The Journal of physiology,
S I Itazawa, and T Isa, and S Ozawa
August 1999, Current opinion in cell biology,
Copied contents to your clipboard!