G protein-coupled receptor signaling: implications for the digestive system. 1997

E D Jacobson, and N W Bunnett
Department of Surgery, University of California, San Francisco, USA.

Extracellular signaling molecules regulate intracellular events by way of complex transduction assemblies composed of several proteins: receptor, G protein, effector, inactivating enzyme. Much is known about the structure and function of these transducer proteins. A signaling molecule initiates transduction by binding to the receptor which then prompts the G protein to undergo a reaction cycle. This cycle involves guanine nucleotide binding and hydrolysis, G protein subunit dissociation, and interactions with an effector (e.g. adenylyl cyclase, phospholipase C), as well as with inactivating molecules. The result is altered generation of intracellular second messengers, protein transcription, or another profound cellular response. This signal transduction system also contains multiple mechanisms for turning off the signal such as phosphorylating, internalizing, or downregulating receptors, uncoupling the receptor-G protein complex, or cell-surface peptidases, and precipitating conformational changes in transducer elements. These aspects of signal transduction are examined in two well studied systems, namely the beta 2-adrenergic and the substance P transducers. Both complexes are important physiological neuroregulators in the gut and elsewhere. Pathophysiological mechanisms involving aberrent signal transduction have been implicated in various diseases including major common illnesses such as heart failure and gastrointestinal disorders such as cholera, other infectious diarrheas, and colitis.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004068 Digestive System Physiological Phenomena Properties and processes of the DIGESTIVE SYSTEM as a whole or of any of its parts. Digestive Physiology,Digestive System Processes,Digestive System Phenomena,Digestive System Phenomenon,Digestive System Physiological Concepts,Digestive System Physiological Phenomenon,Digestive System Physiology,Digestive System Process,Physiology, Digestive,Phenomena, Digestive System,Phenomenas, Digestive System,Phenomenon, Digestive System,Physiology, Digestive System,Process, Digestive System,Processes, Digestive System
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

E D Jacobson, and N W Bunnett
December 2015, Science signaling,
E D Jacobson, and N W Bunnett
September 2022, Journal of cardiovascular pharmacology,
E D Jacobson, and N W Bunnett
October 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E D Jacobson, and N W Bunnett
May 2018, Annual review of biophysics,
E D Jacobson, and N W Bunnett
July 2004, Journal of theoretical biology,
E D Jacobson, and N W Bunnett
February 2007, Current Alzheimer research,
E D Jacobson, and N W Bunnett
July 2003, Molecular pharmacology,
Copied contents to your clipboard!