Gender difference in hypothalamic-pituitary-adrenal axis response to alcohol in the rat: activational role of gonadal steroids. 1997

K M Ogilvie, and C Rivier
The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

Alcohol administration activates the hypothalamic-pituitary-adrenal (HPA) axis of both male and female rats, with females secreting more adrenocorticotropin (ACTH) and corticosterone than males in response to the same dose of alcohol. Our earlier work suggested that this gender difference arises due to the activational effects of gonadal steroids. In particular, we hypothesized that both androgens and estrogens play a role, with androgens exerting an inhibitory influence while estrogens elevate activity of the HPA. In the present studies, we tested this hypothesis by manipulating steroidal milieu in male rats using surgical castration and chronic implantation of testosterone (T), dihydrotestosterone (DHT), or estradiol (E2). Intact male and female rats were included as controls. Injection of alcohol (3 g/kg b.wt., i.p.) resulted in elevation of blood alcohol levels, ACTH and corticosterone in all groups. However, the amount of ACTH secreted was greater in females and castrated males implanted with E2 than in intact males. In castrated males, regardless of androgen implantation, the ACTH response was intermediate, with mean levels between those of females and males, but not differing significantly from either. In contrast to the ACTH results, significantly higher corticosterone secretion was measured in females and castrated males which did not receive a steroid implant. Since there were no significant differences between groups in blood alcohol levels (BALs), these results are not due to steroid-dependent alterations in alcohol metabolism. Because the ACTH data confirmed an activational effect of E2, we sought to determine whether this steroid regulated levels of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) mRNAs in the paraventricular nucleus of the hypothalamus (PVN). Four pretreatment groups were studied: intact males, intact females, castrated males, and castrated males implanted with E2. Two weeks after surgery, alcohol or vehicle was administered 3 h before brains were collected. In intact males, alcohol treatment elevated levels of both CRF and AVP mRNAs in the PVN, as previously reported. In contrast, this treatment decreased CRF mRNA in castrated males implanted with E2. In addition, steroid pretreatment alone elevated CRF mRNA levels in castrated males. Although we did not observe E2-dependent increases in CRF or AVP mRNAs, our data do support a complex effect of gonadal steroids on expression of these mRNAs in the PVN.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D002492 Central Nervous System Depressants A very loosely defined group of drugs that tend to reduce the activity of the central nervous system. The major groups included here are ethyl alcohol, anesthetics, hypnotics and sedatives, narcotics, and tranquilizing agents (antipsychotics and antianxiety agents). CNS Depressants,Depressants, CNS
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot

Related Publications

K M Ogilvie, and C Rivier
January 1995, Critical reviews in neurobiology,
K M Ogilvie, and C Rivier
August 2016, General and comparative endocrinology,
K M Ogilvie, and C Rivier
January 2019, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
K M Ogilvie, and C Rivier
May 1977, The Journal of pharmacology and experimental therapeutics,
K M Ogilvie, and C Rivier
May 2003, Annals of the New York Academy of Sciences,
K M Ogilvie, and C Rivier
December 1992, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!