Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex. 1997

M Mikkonen, and H Soininen, and A Pitkänen
Department of Neuroscience and Neurology, University Hospital, Kuopio, Finland.

Parvalbumin, calretinin, and calbindin-D28k are calcium-binding proteins that are located in largely nonoverlapping neuronal populations in the brain. The authors studied the distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive (ir) cells, fibers, terminals, and neuropil in the eight subfields of the human entorhinal cortex. The distribution of each of the three calcium-binding proteins largely followed the cytoarchitectonic borders of the eight entorhinal subfields, although the regional and laminar distributions of the three proteins were segregated rather than overlapping. The highest density of parvalbumin-ir neurons and terminals was found in the caudal and lateral subfields of the entorhinal cortex. Calretinin and calbindin-D28k immunoreactivities were high rostromedially, although a large number of calretinin and calbindin-D28k neurons were also found in the caudal subfields. All parvalbumin-ir cells had a morphological appearance of nonpyramidal neurons. Parvalbumin-ir terminals formed basket-like formations around unstained somata and cartridges, suggesting that parvalbumin neurons compose a subpopulation of gamma-aminobutyric acid (GABA)ergic basket cells and chandelier cells, respectively. Although calretinin and calbindin-D28k were also found in numerous nonpyramidal neurons, both were also located in pyramidal-shaped neurons in layers V and VI (calretinin) and in layers II and III (calbindin) of the entorhinal cortex, suggesting that they play roles in projection neurons as well. Moreover, the high density of nonpyramidal neurons containing calcium-binding proteins in layers II and III of the entorhinal cortex suggests that they form an integral component of a network that controls the entorhinal outputs to the hippocampus. Furthermore, the largely nonoverlapping distributions of the parvalbumin-, calretinin-, and calbindin-ir neuronal populations in the entorhinal cortex indicate that each of them may modulate a different subset of topographically organized entorhinal outputs.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010320 Parvalbumins Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process. Parvalbumin,Parvalbumin B
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M Mikkonen, and H Soininen, and A Pitkänen
March 2004, Neuroreport,
M Mikkonen, and H Soininen, and A Pitkänen
January 1994, Brain research bulletin,
M Mikkonen, and H Soininen, and A Pitkänen
May 1993, Brain research,
M Mikkonen, and H Soininen, and A Pitkänen
February 2002, The journal of medical investigation : JMI,
M Mikkonen, and H Soininen, and A Pitkänen
December 1997, Journal of chemical neuroanatomy,
Copied contents to your clipboard!