Characterization of rat brain kynurenine aminotransferases I and II. 1997

P Guidetti, and E Okuno, and R Schwarcz
Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore 21228, USA.

The endogenous neuroprotectant kynurenic acid (KYNA) is produced by irreversible transamination of L-kynurenine (KYN). In the brain, two distinct kynurenine aminotransferases (KAT I and KAT II) are responsible for the formation of KYNA. The present experiments were designed to examine the respective roles of the two KATs in the normal rat brain. To this end, the two enzymes were partially purified, and their characteristics were examined. KAT I (identical with glutamine transaminase K) had an optimal pH of 9.5, preferred pyruvate as a cosubstrate and was potently inhibited by glutamine. KAT II (identical with L-alpha-aminoadipate transaminase) had a neutral optimal pH, showed no preference for pyruvate, and was essentially insensitive to inhibition by glutamine. KAT II was selectively inhibited by quisqualic acid (IC50: 520 microM). The endogenous substrate 3-hydroxykynurenine had an approximately 10-fold preference for KAT II. The distinct properties of the two enzymes made it possible to measure brain KAT I and KAT II in parallel by using dialyzed tissue homogenate (to remove interfering endogenous amino acids). Under these conditions, both enzymes presented essentially the same apparent Km values as the partially purified enzymes. In lesioned, neurondepleted brain tissue and in brain regions other than the cerebellum, KYNA derived primarily from KAT II at physiologic pH. In summary, the present study describes a simple methodology for the simultaneous determination of the two KYNA-producing enzymes in small rat brain tissue samples and provides baseline values for future work in experimentally challenged animals.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008190 Lyases A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4. Desmolase,Desmolases,Lyase
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase

Related Publications

P Guidetti, and E Okuno, and R Schwarcz
January 1996, Advances in experimental medicine and biology,
P Guidetti, and E Okuno, and R Schwarcz
March 2020, Neuro-Signals,
P Guidetti, and E Okuno, and R Schwarcz
March 1991, Brain research,
P Guidetti, and E Okuno, and R Schwarcz
January 2004, Vision research,
P Guidetti, and E Okuno, and R Schwarcz
February 1994, Journal of neurochemistry,
P Guidetti, and E Okuno, and R Schwarcz
November 1990, Brain research,
P Guidetti, and E Okuno, and R Schwarcz
May 1995, Journal of the neurological sciences,
P Guidetti, and E Okuno, and R Schwarcz
January 1968, Annales medicinae experimentalis et biologiae Fenniae,
Copied contents to your clipboard!