Cytokeratin cytoskeleton in the differentiating ovarian follicle of the lizard Podarcis sicula Raf. 1997

M G Maurizii, and O Saverino, and C Taddei
Dipartimento di Biologia Evoluzionistica Sperimentale, Università degli Studi di Bologna, Italy.

By immunoblotting and immunocytochemical techniques, we characterized the cytokeratins previously localized by us in the previtellogenic ovarian follicle of Podarcis sicula. Our results show that these cytokeratins correspond to those expressed in the monolayered epithelia. In fact, the immunoblotting analysis showed that the NCL-5D3 antibody, specific for human low molecular weight cytokeratins expressed in monolayered epithelia, reacted with the cytokeratins extracted both from the ovary and from the monolayered intestinal mucosa of Podarcis sicula. Furthermore, this antibody, in this reptile as in humans, clearly immunolabeled sections of corresponding tissues. The organization of the cytokeratin cytoskeleton in the main steps of the ovarian follicle differentiation was also clarified. The reported observations suggest that in Podarcis sicula, the cytokeratin cytoskeleton is absent in the early oocytes. It first appears in the growing oocytes as a thin cortical layer in concomitance with its becoming visible also in the enlarging follicle cells. In the larger follicles, this cytoskeleton appears well organized in intermediate cells and in particular in fully differentiated pyriform cells. In both these cells a cytokeratin network connects the cytoplasm to the oocyte cortex through intercellular bridges. At the end of the previtellogenic oocyte growth, the intense immunolabeling of the apex in the regressing pyriform cells suggests that the cytokeratin, as other cytoplasmic components, may be transferred from these follicle cells to the oocyte. At the end of the oocyte growth, in the larger vitellogenic oocytes surrounded by a monolayer of follicle cells, the cytokeratin constitutes a heavily immunolabeled cortical layer thicker than in the previous stages.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D009866 Oogenesis The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM). Oogeneses
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005260 Female Females
D006080 Ovarian Follicle An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS. Graafian Follicle,Atretic Follicle,Ovarian Follicles,Atretic Follicles,Follicle, Atretic,Follicle, Graafian,Follicle, Ovarian,Follicles, Atretic,Follicles, Graafian,Follicles, Ovarian,Graafian Follicles
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M G Maurizii, and O Saverino, and C Taddei
October 2000, Molecular reproduction and development,
M G Maurizii, and O Saverino, and C Taddei
October 2012, Journal of morphology,
M G Maurizii, and O Saverino, and C Taddei
June 2004, Journal of experimental zoology. Part A, Comparative experimental biology,
M G Maurizii, and O Saverino, and C Taddei
February 2017, Cell and tissue research,
M G Maurizii, and O Saverino, and C Taddei
May 1996, Cell and tissue research,
M G Maurizii, and O Saverino, and C Taddei
December 1994, The Journal of endocrinology,
M G Maurizii, and O Saverino, and C Taddei
June 1983, Experientia,
M G Maurizii, and O Saverino, and C Taddei
July 1993, Molecular reproduction and development,
M G Maurizii, and O Saverino, and C Taddei
August 1989, General and comparative endocrinology,
Copied contents to your clipboard!