Immunoblot analyses of the elicited Sanguinaria canadensis enzyme, dihydrobenzophenanthridine oxidase: evidence for resolution from a polyphenol oxidase isozyme. 1997

A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
E. A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, Missouri 63104-1079, USA.

In our initial purification of dihydrobenzophenanthridine oxidase from Sanguinaria canadensis plant cell cultures, we reported that our most purified preparations contained a major band at 77 kDa and minor lower Mr bands. Here we present evidence on highly purified dihydrobenzophenanthridine oxidase from elicited S. canadensis cultures to indicate that this enzyme is the 77-kDa protein and that lower Mr bands include an isozyme(s) of the polyphenol oxidase family that copurifies with it. An antibody raised against the 77-kDa protein and an anti-polyphenol oxidase antibody that recognizes a 70-kDa band were used to monitor chromatographic fractions by immunoblot analysis of the oxidases. Oxidase-containing eluates from DEAE-Sephadex, CM, and HiTrap blue were compared to corresponding flow-through fractions. Bands at 77 and 88 kDa were detected with anti-dihydrobenzophenanthridine oxidase antibody in eluates displaying high dihydrobenzophenanthridine oxidase activity. Polyphenol oxidase specific activity and immunoreactivity partitioned both in flow-through and eluate fractions of the CM and HiTrap columns. Estimation of the dihydrobenzophenanthridine oxidase and polyphenol oxidase specific activities for each step showed increasing enrichment of alkaloidal enzyme accompanied by variable dihydrobenzophenanthridine oxidase/polyphenol oxidase activity ratios. Taken together these observations indicate that the dihydrobenzophenanthridine and polyphenol oxidases have Mr values of 77 and 70 kDa, respectively, and the two enzymes are different entities.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010946 Plants, Medicinal Plants whose roots, leaves, seeds, bark, or other constituent parts possess therapeutic, tonic, purgative, curative or other pharmacologic attributes, when administered to man or animals. Herbs, Medicinal,Medicinal Herbs,Healing Plants,Medicinal Plants,Pharmaceutical Plants,Healing Plant,Herb, Medicinal,Medicinal Herb,Medicinal Plant,Pharmaceutical Plant,Plant, Healing,Plant, Medicinal,Plant, Pharmaceutical,Plants, Healing,Plants, Pharmaceutical
D004156 Catechol Oxidase An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1. Diphenol Oxidases,Diphenol Oxidase,Polyphenol Oxidase,Polyphenoloxidase,Oxidase, Catechol,Oxidase, Diphenol,Oxidase, Polyphenol,Oxidases, Diphenol
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017421 Sequence Analysis A multistage process that includes the determination of a sequence (protein, carbohydrate, etc.), its fragmentation and analysis, and the interpretation of the resulting sequence information. Sequence Determination,Analysis, Sequence,Determination, Sequence,Determinations, Sequence,Sequence Determinations,Analyses, Sequence,Sequence Analyses

Related Publications

A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
November 1992, Archives of biochemistry and biophysics,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
December 1996, Phytochemistry,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
March 2003, Phytotherapy research : PTR,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
July 1860, Glasgow medical journal,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
May 1847, Western journal of medicine and surgery,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
May 2020, Antioxidants (Basel, Switzerland),
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
April 1939, Plant physiology,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
September 2019, Mitochondrial DNA. Part B, Resources,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
June 1970, Lloydia,
A Ignatov, and M C Neuman, and R Barg, and R J Krueger, and C J Coscia
January 1961, Taiwan yi xue hui za zhi. Journal of the Formosan Medical Association,
Copied contents to your clipboard!