A human homologue (BICD1) of the Drosophila bicaudal-D gene. 1997

M Baens, and P Marynen
Center for Human Genetics, Flanders Interuniversity Institute for Biotechnology, Leuven, Belgium.

We previously isolated a cDNA fragment homologous to the Drosophila Bicaudal-D gene (Bic-D) using a hybridization selection procedure with cosmids derived from the short arm of human chromosome 12. A PCR-mediated cDNA cloning strategy was applied to obtain the coding sequence of the human homologue (BICD1) and to generate a partial mouse (Bicdh1) cDNA. The Drosophila Bicaudal-D gene encodes a coiled coil protein, characterized by five alpha-helix domains and a leucine zipper motif, that forms part of the cytoskeleton and mediates the correct sorting of mRNAs for oocyte- and axis-determining factors during oogenesis. Analysis of the predicted amino acid sequence of the BICD1 cDNA clones indicates that the sequence similarity is essentially limited to the amphipatic helices and the leucine zipper, but the conserved order of these domains suggests a similar function of the protein in mammalians. A database search further indicates the existence of a second human homologue on chromosome arm 9q and a Caenorhabditis elegans homologue. Northern blot analysis indicates that both the human and the murine homologues produce an mRNA species of congruent with9.5 kb expressed in brain, heart, and skeletal muscle and during mouse embryonic development. The conserved structural characteristics of the BICD1 protein and its expression in muscle and especially brain suggest that BICD1 is a component of a cytoskeleton-based mRNA sorting mechanism conserved during evolution.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

M Baens, and P Marynen
February 2000, Genetics,
M Baens, and P Marynen
August 2014, Acta crystallographica. Section F, Structural biology communications,
M Baens, and P Marynen
December 2004, Gene expression patterns : GEP,
M Baens, and P Marynen
November 1996, Development (Cambridge, England),
M Baens, and P Marynen
March 2001, Mechanisms of development,
Copied contents to your clipboard!