Expression of telomerase RNA, telomerase activity, and telomere length in human gliomas. 1997

K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
Department of Neurosurgery, Niigata University, Japan.

To understand the mechanisms of telomere maintenance in human gliomas, telomerase activity, telomerase RNA expression and telomere length of surgically excised glioma samples were analyzed. Sixty-five percent of gliomas exhibited telomerase activity, the occurrence of which was not related to their histological malignancy scale. Not only the telomerase-positive gliomas, but also the telomerase-negative gliomas and normal brain expressed telomerase RNA, suggesting that the presence of telomerase RNA component does not indicate the presence of telomerase activity. Compared with telomerase-positive gliomas, telomerase-negative gliomas had long heterogeneous telomeric terminal restriction fragments. These data suggest that in addition to the telomerase-dependent mechanism, a telomerase-independent mechanism for telomere maintenance may be present in human gliomas.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005909 Glioblastoma A malignant form of astrocytoma histologically characterized by pleomorphism of cells, nuclear atypia, microhemorrhage, and necrosis. They may arise in any region of the central nervous system, with a predilection for the cerebral hemispheres, basal ganglia, and commissural pathways. Clinical presentation most frequently occurs in the fifth or sixth decade of life with focal neurologic signs or seizures. Astrocytoma, Grade IV,Giant Cell Glioblastoma,Glioblastoma Multiforme,Astrocytomas, Grade IV,Giant Cell Glioblastomas,Glioblastoma, Giant Cell,Glioblastomas,Glioblastomas, Giant Cell,Grade IV Astrocytoma,Grade IV Astrocytomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001254 Astrocytoma Neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors. Fibrillary astrocytomas are the most common type and may be classified in order of increasing malignancy (grades I through IV). In the first two decades of life, astrocytomas tend to originate in the cerebellar hemispheres; in adults, they most frequently arise in the cerebrum and frequently undergo malignant transformation. (From Devita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2013-7; Holland et al., Cancer Medicine, 3d ed, p1082) Astrocytoma, Subependymal Giant Cell,Glioma, Astrocytic,Oligoastrocytoma, Mixed,Pleomorphic Xanthoastrocytomas,Anaplastic Astrocytoma,Astrocytoma, Grade I,Astrocytoma, Grade II,Astrocytoma, Grade III,Astrocytoma, Protoplasmic,Astroglioma,Cerebral Astrocytoma,Childhood Cerebral Astrocytoma,Fibrillary Astrocytoma,Gemistocytic Astrocytoma,Intracranial Astrocytoma,Juvenile Pilocytic Astrocytoma,Pilocytic Astrocytoma,Subependymal Giant Cell Astrocytoma,Anaplastic Astrocytomas,Astrocytic Glioma,Astrocytic Gliomas,Astrocytoma, Anaplastic,Astrocytoma, Cerebral,Astrocytoma, Childhood Cerebral,Astrocytoma, Fibrillary,Astrocytoma, Gemistocytic,Astrocytoma, Intracranial,Astrocytoma, Juvenile Pilocytic,Astrocytoma, Pilocytic,Astrocytomas,Astrocytomas, Grade III,Astrogliomas,Cerebral Astrocytoma, Childhood,Cerebral Astrocytomas,Childhood Cerebral Astrocytomas,Fibrillary Astrocytomas,Gemistocytic Astrocytomas,Gliomas, Astrocytic,Grade I Astrocytoma,Grade I Astrocytomas,Grade II Astrocytoma,Grade II Astrocytomas,Grade III Astrocytoma,Grade III Astrocytomas,Intracranial Astrocytomas,Juvenile Pilocytic Astrocytomas,Mixed Oligoastrocytoma,Mixed Oligoastrocytomas,Pilocytic Astrocytoma, Juvenile,Pilocytic Astrocytomas,Pleomorphic Xanthoastrocytoma,Protoplasmic Astrocytoma,Protoplasmic Astrocytomas,Xanthoastrocytoma, Pleomorphic
D012334 RNA, Neoplasm RNA present in neoplastic tissue. Neoplasm RNA
D015139 Blotting, Southern A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Southern Blotting,Blot, Southern,Southern Blot
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
October 1998, International journal of molecular medicine,
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
January 2000, Pathology, research and practice,
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
November 1998, European journal of cancer (Oxford, England : 1990),
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
January 2015, PloS one,
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
June 2015, Anticancer research,
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
September 2004, Current protocols in immunology,
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
January 2005, Methods in molecular medicine,
K Morii, and R Tanaka, and K Onda, and I Tsumanuma, and J Yoshimura
May 1998, Cancer research,
Copied contents to your clipboard!