Identification of a ligand-binding site on the granulocyte colony-stimulating factor receptor by molecular modeling and mutagenesis. 1997

J E Layton, and J Iaria, and D K Smith, and H R Treutlein
Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, P. O. Box 2008, Royal Melbourne Hospital, Parkville, Australia 3050. judy.layton@ludwig.edu.au

Granulocyte colony-stimulating factor (G-CSF) initiates its effects on cells of the neutrophil lineage by inducing formation of a homodimeric receptor complex. The structure of the G-CSF receptor has not yet been determined, therefore we used molecular modeling to identify regions of the receptor that were likely to be involved in ligand binding. The G-CSF receptor sequence was aligned with all the available sequences of the gp130 and growth hormone receptor families and a model of the cytokine receptor homologous domain was constructed, based on the growth hormone receptor structure. Alanine substitution mutagenesis was performed on loops and individual residues that were predicted to bind ligand. Mutant receptors were expressed in factor-dependent Ba/F3 cells and assessed for proliferation response and ligand binding. Six residues were identified that significantly reduced receptor function, with Arg288 in the F'-G' loop having the greatest effect. These residues formed a binding face on the receptor model resembling the growth hormone receptor site, which suggests that the model is reasonable. However, electrostatic analysis of the model provided further evidence that the mechanism of receptor dimerization is different from that of the growth hormone receptor.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016188 Receptors, Granulocyte Colony-Stimulating Factor Receptors that bind and internalize GRANULOCYTE COLONY-STIMULATING FACTOR. Their MW is believed to be 150 kD. These receptors are found mainly on a subset of myelomonocytic cells. G-CSF Receptors,G-CSF Receptor,Granulocyte Colony-Stimulating Factor Receptors,Receptor, Granulocyte Colony-Stimulating Factor,Receptors, G-CSF,G CSF Receptor,G CSF Receptors,Granulocyte Colony Stimulating Factor Receptors,Receptor, G-CSF,Receptor, Granulocyte Colony Stimulating Factor,Receptors, G CSF,Receptors, Granulocyte Colony Stimulating Factor

Related Publications

J E Layton, and J Iaria, and D K Smith, and H R Treutlein
September 2001, The Journal of biological chemistry,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
September 1994, The Journal of biological chemistry,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
March 2003, The Journal of biological chemistry,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
January 1990, International journal of cell cloning,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
January 1992, Bioconjugate chemistry,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
December 1991, Science (New York, N.Y.),
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
February 1989, Biochemical and biophysical research communications,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
August 1996, Blood,
J E Layton, and J Iaria, and D K Smith, and H R Treutlein
September 1991, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!