An inhibitor of ornithine decarboxylase antagonizes superoxide generation by primed human polymorphonuclear leukocytes. 1998

J D Walters, and A C Cario, and M M Danne, and P T Marucha
Section of Periodontology, College of Dentistry, Ohio State University Health Sciences Center, Columbus 43210, USA. jwalters@postbox.acs.ohio-state.edu

Tumor necrosis factor-alpha (TNF-alpha) induces a rapid increase in polymorphonuclear leukocyte (PMN) polyamine content which appears to be required for optimal priming of the respiratory burst. The objective of the present study was to determine whether inhibition of polyamine biosynthesis modifies PMN responses to lipopolysaccharide (LPS), granulocyte-macrophage colony-stimulating factor (GM-CSF), or granulocyte colony-stimulating factor (G-CSF). Treatment with alpha-difluoromethylornithine (DFMO), a selective inhibitor of the rate-limiting biosynthetic enzyme ornithine decarboxylase, produced dose-dependent inhibition of the respiratory burst in PMNs that were primed by these agents and subsequently activated by formyl-Met-Leu-Phe (fMLP). However, DFMO did not significantly inhibit fMLP-stimulated superoxide generation or alter the induction of PMN adhesion and interleukin-1 beta (IL-1 beta) mRNA expression by LPS or GM-CSF. Antagonism of priming by DFMO correlated with a dose-dependent attenuation of fMLP-induced intracellular Ca2+ mobilization (r > or = 0.96). Since Ca2+ plays an important role in modulating the respiratory burst in primed PMNs, this could, in part, account for the selective effects of DFMO.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000518 Eflornithine An inhibitor of ORNITHINE DECARBOXYLASE, the rate limiting enzyme of the polyamine biosynthetic pathway. Difluoromethylornithine,alpha-Difluoromethylornithine,DL-alpha-Difluoromethylornithine,Eflornithine Hydrochloride,Eflornithine Monohydrochloride, Monohydrate,MDL-71,782 A,Ornidyl,RMI 71782,Vaniqa,alpha-Difluoromethyl Ornithine,DL alpha Difluoromethylornithine,MDL 71,782 A,MDL71,782 A,Ornithine, alpha-Difluoromethyl,alpha Difluoromethyl Ornithine,alpha Difluoromethylornithine
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha

Related Publications

J D Walters, and A C Cario, and M M Danne, and P T Marucha
July 2001, Artificial cells, blood substitutes, and immobilization biotechnology,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
June 1991, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
January 1985, Voprosy meditsinskoi khimii,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
December 2000, The Journal of investigative dermatology,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
June 1980, Inflammation,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
May 1997, The Journal of pharmacy and pharmacology,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
April 1984, Biochimica et biophysica acta,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
January 1988, Voprosy meditsinskoi khimii,
J D Walters, and A C Cario, and M M Danne, and P T Marucha
June 1987, Nihon Shishubyo Gakkai kaishi,
Copied contents to your clipboard!