Disruption of the murine gene encoding phosphatidylethanolamine N-methyltransferase. 1997

C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
Department of Biochemistry, University of Alberta, Edmonton, Canada.

All nucleated cells make phosphatidylcholine via the CDP-choline pathway. Liver has an alternative pathway in which phosphatidylcholine is made by methylation of phosphatidylethanolamine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT). We investigated the function of PEMT and its role in animal physiology by targeted disruption of its gene, Pempt2. A targeting vector that interrupts exon 2 was constructed and introduced into mice yielding three genotypes: normal (+/+), heterozygotes (+/-), and homozygotes (-/-) for the disrupted PEMT gene. Only a trace of PE methylation activity remained in Pempt2(-/-) mice. Antibody to one form of the enzyme, PEMT2, indicated complete loss of this protein from Pempt2(-/-) mice and a decrease in Pempt2(+/-) mice, compared with Pempt2(+/+) mice. The levels of hepatic phosphatidylethanolamine and phosphatidylcholine were minimally affected. The active form of CTP:phosphocholine cytidylyltransferase, the regulated enzyme in the CDP-choline pathway, was increased 60% in the PEMT-deficient mice. Injection of [L-methyl-3H]methionine demonstrated that the in vivo PEMT activity was eliminated in the Pempt2(-/-) mice and markedly decreased in the Pempt2(+/-) mice. This experiment also demonstrated that the choline moiety derived from PEMT in the liver can be distributed via the plasma throughout the mouse where it is found as phosphatidylcholine, lysophosphatidylcholine, and sphingomyelin. Mice homozygous for the disrupted Pempt2 gene displayed no abnormal phenotype, normal hepatocyte morphology, normal plasma lipid levels and no differences in bile composition. This is the first application of the "knockout mouse" technique to a gene for phospholipid biosynthesis.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006579 Heterozygote An individual having different alleles at one or more loci regarding a specific character. Carriers, Genetic,Genetic Carriers,Carrier, Genetic,Genetic Carrier,Heterozygotes
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
November 1996, Journal of lipid research,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
December 2001, Bioscience, biotechnology, and biochemistry,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
January 1989, The Journal of biological chemistry,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
April 2005, Brain research. Molecular brain research,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
September 1997, Biochimica et biophysica acta,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
March 2013, Biochimica et biophysica acta,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
November 1988, The Journal of biological chemistry,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
April 2006, American journal of medical genetics. Part A,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
January 1992, Methods in enzymology,
C J Walkey, and L R Donohue, and R Bronson, and L B Agellon, and D E Vance
October 2006, Nutrition reviews,
Copied contents to your clipboard!