Photoperiodic time measurement in tau mutant hamsters. 1997

K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
National Science Foundation Center for Biological Timing, Charlottesville, VA, USA.

Photoperiodic regulation of testicular function was investigated in homozygous tau mutant hamsters; these animals have an innate circadian period of about 20 h. In 20-h light:dark (LD) cycles, the minimum photoperiod required to prevent testicular regression was between 10.0 and 11.5 h per 20-h cycle (equivalent to 12.0-13.8 circadian hours). This was proportionally similar to the minimum photoperiod necessary to prevent regression in wild-type hamsters maintained in 24-h LD cycles. To examine the shape of the photoperiodic photosensitivity curve in homozygous tau mutant hamsters, the authors measured the effects of different T cycles on testicular maintenance. Entrainment to LD 1:18.0 and LD 1:20.5 partially or completely prevented gonadal regression in homozygous tau mutant hamsters, but LD 1:19.4 did not prevent regression. When considered in terms of circadian time, the photoperiodic photosensitivity curve for homozygous tau mutant hamsters was similar to that described previously for wild-type hamsters. The results indicate that, as in wild-type hamsters, photoperiodic regulation of reproduction is regulated by circadian photosensitivity in homozygous tau mutant hamsters. Because tau mutant hamsters measure day length against a time base of 20 h, the circadian pacemaker that measures day length might be the same as that which generates circadian rhythmicity in locomotor activity. The authors' data leave open the question of whether the tau mutation has had effects on the control of reproduction that are not directly attributable to its effects on the period of the circadian oscillator.

UI MeSH Term Description Entries
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D016875 tau Proteins Microtubule-associated proteins that are mainly expressed in neurons. Tau proteins constitute several isoforms and play an important role in the assembly of tubulin monomers into microtubules and in maintaining the cytoskeleton and axonal transport. Aggregation of specific sets of tau proteins in filamentous inclusions is the common feature of intraneuronal and glial fibrillar lesions (NEUROFIBRILLARY TANGLES; NEUROPIL THREADS) in numerous neurodegenerative disorders (ALZHEIMER DISEASE; TAUOPATHIES). tau Protein,Protein, tau,Proteins, tau
D017440 Photoperiod The time period of daily exposure that an organism receives from daylight or artificial light. It is believed that photoperiodic responses may affect the control of energy balance and thermoregulation. Dark-Light Cycle,Daylight Cycle,Light Cycle,Light-Dark Cycle,Cycle, Dark-Light,Cycle, Daylight,Cycle, Light,Cycle, Light-Dark,Cycles, Dark-Light,Cycles, Daylight,Cycles, Light,Cycles, Light-Dark,Dark Light Cycle,Dark-Light Cycles,Daylight Cycles,Light Cycles,Light Dark Cycle,Light-Dark Cycles,Photoperiods

Related Publications

K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
July 1994, The American journal of physiology,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
January 1992, Journal of biological rhythms,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
February 2015, Current opinion in insect science,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
January 1994, Journal of biological rhythms,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
September 1992, Experientia,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
September 1992, Brain research. Molecular brain research,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
June 2002, Journal of biological rhythms,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
January 2015, Annual review of plant biology,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
October 2007, Journal of biological rhythms,
K Shimomura, and D E Nelson, and N L Ihara, and M Menaker
October 1976, Federation proceedings,
Copied contents to your clipboard!