Nuclear lipid-dependent signal transduction in human osteosarcoma cells. 1997

N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
Institute of Cytomorphology, CNR Chieti, Bologna Italy.

The enzymes and substrates involved in phosphoinositide signal transduction which have been detected in the nucleus of several cell types have been demonstrated to be responsive to agonists. The complexity of this aspect of inositide function has been previously analyzed in some cell models characterized by a mitogenic or differentiating response to specific factors. An interesting experimental model is represented by human derived osteosarcoma Saos-2 cells, characterized by the expression of high affinity receptors for interleukin 1 alpha (IL-1 alpha), which is one of the most potent stimulators of bone resorption. In particular, we investigated the earliest intracellular events following the binding of IL-1 alpha to its receptor, involving the inositide signal transduction pathway. Saos-2 cells present a partitioning of the phosphoinositidase (PLC) isoforms; in fact, the nucleus contains both PLC beta 1 and gamma 1, while the cytoplasm contains almost exclusively the gamma 1 isoform. IL-1 alpha evokes a rapid and transient increase of the PLC beta 1 activity in the nucleus, which causes the hydrolysis of phosphatidylinositol mono- and bis-phosphate. In response to IL-1 alpha, not only the canonical inositol lipid pathway appears to be involved; also the 3'-phosphorylated lipids generated by phosphatidylinositol 3-kinase (PI 3-K), which may act as second messengers, appear to be affected. In fact, Saos-2 cells present a nuclear PI 3-K activity which can be enhanced by the IL-1 alpha treatment. Among the possible targets of the second messengers released by the nuclear PLC beta 1 activation, we found that some protein kinase C isoforms, namely the epsilon and zeta, which are present within the nucleus, are activated after IL-1 alpha exposure. These activated PKC isoforms, in turn, could modulate the activity of the transcription factor NFkB, which, 5 min after IL-1 alpha treatment, has already translocated to the nucleus and bound to DNA to promote gene activation. The actual role of the inositide pathway in the Saos-2 cell function has also been investigated by utilizing cell clones transfected with the mouse sequence of the PLC beta 1.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012516 Osteosarcoma A sarcoma originating in bone-forming cells, affecting the ends of long bones. It is the most common and most malignant of sarcomas of the bones, and occurs chiefly among 10- to 25-year-old youths. (From Stedman, 25th ed) Sarcoma, Osteogenic,Osteogenic Sarcoma,Osteosarcoma Tumor,Osteogenic Sarcomas,Osteosarcoma Tumors,Osteosarcomas,Sarcomas, Osteogenic,Tumor, Osteosarcoma,Tumors, Osteosarcoma
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
July 2002, Cellular and molecular life sciences : CMLS,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
October 1994, The Journal of membrane biology,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
October 2005, Histology and histopathology,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
January 1990, Progress in lipid research,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
January 1996, Acta physiologica Hungarica,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
January 2001, International journal of oncology,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
January 1996, Anticancer research,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
September 2020, Human & experimental toxicology,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
September 1986, The Journal of experimental biology,
N M Maraldi, and S Marmiroli, and L Cocco, and S Capitani, and O Barnabei, and F A Manzoli
June 2000, FEBS letters,
Copied contents to your clipboard!