Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin beta1-chain maturation in colon epithelial cells. 1997

Z Yan, and M Chen, and M Perucho, and E Friedman
State University of New York Health Science Center, Department of Pathology, Syracuse, New York 13210, USA.

Human colorectal tumors commonly contain mutations in Ki-ras but rarely, if ever, in Ha-ras. The selectivity for Ki-ras mutations in this tumor was explored using the HD6-4 colon epithelial cell line which contains no ras mutations. After adhesion to an extracellular matrix, HD6-4 cells polarize into columnar goblet cells with distinct apical and basal regions. Stable HD6-4 transfectants were made with mini-gene constructs of the oncogenic cellular Ki-ras4BG12V gene, the oncogenic Ha-rasG12V gene, or mini-gene constructs of wild-type Ki-ras4B as a control. Ki-ras mutations, but not Ha-ras mutations, disrupted colon epithelial cell apicobasal polarity and adhesion to collagen I and laminin. Three Ha-ras transfectants and three Ki-ras transfectants exhibited Ras proteins expressing the Val-12 mutation by Western blotting with pan-rasG12V antibody. Only wild-type Ki-ras transfectant cells and oncogenic Ha-ras transfectant cells synthesized the mature, fully glycosylated forms of beta1 integrin. Instead of the mature integrin beta1-chain, a faster migrating beta1-chain intermediate was detected on the cell surface and in the cytoplasm of the oncogenic Ki-ras transfectants. Expression of the oncogenic Ki-ras gene caused the altered beta1 integrin maturation because phosphorothiolated antisense oligonucleotides to Ki-ras reduced expression of both the mutant Ki-Ras protein and the aberrant integrin beta1-chain and increased expression of the mature integrin beta1-chain. Altered glycosylation generated the new beta1 integrin form since integrin core beta1-chain proteins of the same molecular weight were yielded in Ki-ras, Ha-ras, and control transfectants after removal of sugar residues with endoglycosidase F or following tunicamycin treatment to inhibit glycosylation. The selective effect of oncogenic Ki-ras on beta1 integrin glycosylation was not due to selective activation of mitogen-activated protein kinases because both mutated Ki- and Ha-ras genes activated this pathway and increased cell proliferation. Since blocking the glycosylation of integrin beta1-chain inhibited the adherence, polarization, and subsequent differentiation of colon epithelial cells, the selective effects of the oncogenic cellular Ki-ras gene on integrin beta1-chain glycosylation may account, at least in part, for the selection of Ki-ras mutations in human colon tumors.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D003106 Colon The segment of LARGE INTESTINE between the CECUM and the RECTUM. It includes the ASCENDING COLON; the TRANSVERSE COLON; the DESCENDING COLON; and the SIGMOID COLON. Appendix Epiploica,Taenia Coli,Omental Appendices,Omental Appendix,Appendices, Omental,Appendix, Omental
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015689 Oncogene Protein p21(ras) Transforming protein encoded by ras oncogenes. Point mutations in the cellular ras gene (c-ras) can also result in a mutant p21 protein that can transform mammalian cells. Oncogene protein p21(ras) has been directly implicated in human neoplasms, perhaps accounting for as much as 15-20% of all human tumors. This enzyme was formerly listed as EC 3.6.1.47. p21(v-Ha-ras),p21(v-Ki-ras),ras Oncogene Protein p21,p21 Transforming Viral Protein,p21 v-H-ras,p21 v-Ha-ras,p21 v-Ki-ras,p21 v-ras,p21(v-H-ras),p21(v-K-ras),ras Oncogene Product p21,ras Oncogene p21 Product,p21 v H ras,p21 v Ha ras,p21 v Ki ras,p21 v ras,v-H-ras, p21,v-Ha-ras, p21,v-Ki-ras, p21,v-ras, p21

Related Publications

Z Yan, and M Chen, and M Perucho, and E Friedman
October 1985, Carcinogenesis,
Z Yan, and M Chen, and M Perucho, and E Friedman
February 2001, Bulletin du cancer,
Z Yan, and M Chen, and M Perucho, and E Friedman
July 1999, Oncogene,
Z Yan, and M Chen, and M Perucho, and E Friedman
October 1999, Journal of cellular physiology,
Z Yan, and M Chen, and M Perucho, and E Friedman
October 1996, Genes & development,
Z Yan, and M Chen, and M Perucho, and E Friedman
September 1987, International journal of cancer,
Z Yan, and M Chen, and M Perucho, and E Friedman
April 1998, The Journal of clinical investigation,
Copied contents to your clipboard!