Glycosylphosphatidylinositols: biosynthesis and intracellular transport. 1997

A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
Department of Biochemistry, University of Wisconsin-Madison 53706, USA.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017261 Glycosylphosphatidylinositols Compounds containing carbohydrate or glycosyl groups linked to phosphatidylinositols. They anchor GPI-LINKED PROTEINS or polysaccharides to cell membranes. GPI Membrane Anchor,GPI Membrane Anchors,Glycosyl-Phosphatidylinositol Membrane Protein Anchor,Glycosylated Phosphatidylinositol,Glycosylphosphatidylinositol Anchor,Glycosylphosphatidylinositol Anchors,Phosphatidylinositol Glycan,Gly-PtdIns,Glycoinositol Phospholipid Membrane Anchor,Glycosyl-Phosphatidylinositol,Glycosyl-Phosphatidylinositol Membrane Protein Anchors,Glycosylated Phosphatidylinositols,Glycosylphosphatidylinositol,Glycosylphosphatidylinositol Linkage,PI-Glycan,Anchor, GPI Membrane,Anchor, Glycosylphosphatidylinositol,Anchors, GPI Membrane,Anchors, Glycosylphosphatidylinositol,Glycan, Phosphatidylinositol,Glycosyl Phosphatidylinositol,Glycosyl Phosphatidylinositol Membrane Protein Anchor,Glycosyl Phosphatidylinositol Membrane Protein Anchors,Linkage, Glycosylphosphatidylinositol,Membrane Anchor, GPI,Membrane Anchors, GPI,PI Glycan,Phosphatidylinositol, Glycosylated,Phosphatidylinositols, Glycosylated

Related Publications

A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
June 1990, Biochemistry,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
May 1999, Biological chemistry,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
January 1983, Methods in enzymology,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
January 1982, Seikagaku. The Journal of Japanese Biochemical Society,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
December 1989, Current opinion in cell biology,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
December 2001, Seikagaku. The Journal of Japanese Biochemical Society,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
February 1986, The Journal of biological chemistry,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
April 1991, Current genetics,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
May 1984, The Journal of biological chemistry,
A K Menon, and N A Baumann, and W van't Hof, and J Vidugiriene
August 1985, The Journal of biological chemistry,
Copied contents to your clipboard!