Synthesis and characterization of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled fluorescent ligands for the mu opioid receptor. 1997

P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
Department of Pharmacology, University of Michigan Medical School, Ann Arbor 48109, USA.

A series of opioid ligands utilizing the 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene++ +-3-propionic acid or 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza- s-indacene-3-propionic acid were synthesized and characterized for their ability to act as a suitable fluorescent label for the mu opioid receptor. All compounds displaced the mu opioid receptor binding of [3H]Tyr-D-Ala-Gly-(Me)Phe-Gly-ol in monkey brain membranes with high affinity. The binding of fluorescent ligands to delta and kappa receptors was highly variable. 5,7-Dimethyl-BODIPY naltrexamine, "6-BNX," displayed subnanomolar affinities for the mu and kappa opioid receptors (Ki 0.07 and 0.43 nM, respectively) and nanomolar affinity at the delta (Ki 1.4 nM) receptor. Using fluorescence spectroscopy, the binding of 6-BNX in membranes from C6 glioma cells transfected with the cloned mu opioid receptor was investigated. In these membranes containing a high receptor density (10-80 pmol/mg protein), 6-BNX labeling was saturable, mu opioid specific, stereoselective (as determined with the isomers dextrorphan and levorphanol), and more than 90% specific. The results describe a series of newly developed fluorescent ligands for the mu opioid receptor and the use of one of these ligands as a label for the cloned mu receptor. These ligands provide a new approach for studying the structural and biophysical nature of opioid receptors.

UI MeSH Term Description Entries
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D001896 Boron Compounds Inorganic or organic compounds that contain boron as an integral part of the molecule. Borides,Compounds, Boron
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D017450 Receptors, Opioid, mu A class of opioid receptors recognized by its pharmacological profile. Mu opioid receptors bind, in decreasing order of affinity, endorphins, dynorphins, met-enkephalin, and leu-enkephalin. They have also been shown to be molecular receptors for morphine. Morphine Receptors,Opioid Receptors, mu,Receptors, Morphine,Receptors, mu,Receptors, mu Opioid,mu Receptors,Morphine Receptor,mu Opioid Receptor,mu Receptor,Opioid Receptor, mu,Receptor, Morphine,Receptor, mu,Receptor, mu Opioid,mu Opioid Receptors
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
May 2008, Bioorganic & medicinal chemistry letters,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
October 2011, Journal of medicinal chemistry,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
August 2008, Acta crystallographica. Section E, Structure reports online,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
April 2011, The Journal of organic chemistry,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
July 2009, Journal of fluorescence,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
January 2006, Bioorganicheskaia khimiia,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
May 2000, The Journal of organic chemistry,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
March 2010, Acta crystallographica. Section E, Structure reports online,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
June 2023, RSC advances,
P J Emmerson, and S Archer, and W El-Hamouly, and A Mansour, and H Akil, and F Medzihradsky
June 2009, Chemistry (Weinheim an der Bergstrasse, Germany),
Copied contents to your clipboard!