Role of acceptor stem conformation in tRNAVal recognition by its cognate synthetase. 1997

M Liu, and W C Chu, and J C Liu, and J Horowitz
Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 50011, USA.

Although the anticodon is the primary element in Escherichia coli tRNAValfor recognition by valyl-tRNA synthetase (ValRS), nucleotides in the acceptor stem and other parts of the tRNA modulate recognition. Study of the steady state aminoacylation kinetics of acceptor stem mutants of E.coli tRNAValdemonstrates that replacing any base pair in the acceptor helix with another Watson-Crick base pair has little effect on aminoacylation efficiency. The absence of essential recognition nucleotides in the acceptor helix was confirmed by converting E.coli tRNAAlaand yeast tRNAPhe, whose acceptor stem sequences differ significantly from that of tRNAVal, to efficient valine acceptors. This transformation requires, in addition to a valine anticodon, replacement of the G:U base pair in the acceptor stem of these tRNAs. Mutational analysis of tRNAValverifies that G:U base pairs in the acceptor helix act as negative determinants of synthetase recognition. Insertion of G:U in place of the conserved U4:A69 in tRNAValreduces the efficiency of aminoacylation, due largely to an increase in K m. A smaller but significant decline in aminoacylation efficiency occurs when G:U is located at position 3:70; lesser effects are observed for G:U at other positions in the acceptor helix. The negative effects of G:U base pairs are strongly correlated with changes in helix structure in the vicinity of position 4:69 as monitored by19F NMR spectroscopy of 5-fluorouracil-substituted tRNAVal. This suggests that maintaining regular A-type RNA helix geometry in the acceptor stem is important for proper recognition of tRNAValby valyl-tRNA synthetase.19F NMR also shows that formation of the tRNAVal-valyl-tRNA synthetase complex does not disrupt the first base pair in the acceptor stem, a result different from that reported for the tRNAGln-glutaminyl-tRNA synthetase complex.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000926 Anticodon The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome. Anticodons
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012366 RNA, Transfer, Val A transfer RNA which is specific for carrying valine to sites on the ribosomes in preparation for protein synthesis. Transfer RNA, Val,Valine-Specific tRNA,tRNAVal,tRNA(Val),RNA, Val Transfer,Val Transfer RNA,Valine Specific tRNA,tRNA, Valine-Specific

Related Publications

M Liu, and W C Chu, and J C Liu, and J Horowitz
May 2004, Journal of molecular biology,
M Liu, and W C Chu, and J C Liu, and J Horowitz
March 1993, Nature,
M Liu, and W C Chu, and J C Liu, and J Horowitz
May 2008, Nucleic acids research,
M Liu, and W C Chu, and J C Liu, and J Horowitz
March 1989, Science (New York, N.Y.),
M Liu, and W C Chu, and J C Liu, and J Horowitz
April 2003, RNA (New York, N.Y.),
M Liu, and W C Chu, and J C Liu, and J Horowitz
March 2004, Molecular cell,
M Liu, and W C Chu, and J C Liu, and J Horowitz
September 1997, Proceedings of the National Academy of Sciences of the United States of America,
M Liu, and W C Chu, and J C Liu, and J Horowitz
February 1991, Biochemistry,
Copied contents to your clipboard!