Nuclear proteins. II. Similarity of nonhistone proteins in nuclear sap and chromatin, and essential absence of contractile proteins from mouse liver nuclei. 1976

D E Comings, and D C Harris

High resolution SDS slab gel electrophoresis has been used to examine the distribution of nonhistone proteins (NHP) in the saline-EDTA, Tris, and 0.35 M NaCl washes of isolated mouse liver nuclei. These studies led to the following conclusions: (a) all the prominent NHP which remain bound to DNA are also present in somewhat similar proportions in the saline-EDTA, Tris, and 0.35 M NaCl washes of nuclei; (b) a protein comigrating with actin is prominent in the first saline-EDTA wash of nuclei, but present as only a minor band in the subsequent washes and on washed chromatin; (c) the presence of nuclear matrix proteins in all the nuclear washes and cytosol indicates that these proteins are distributed throughout the cell; (d) a histone-binding protein (J2) analogous to the HMG1 protein of K. V. Shooter, G.H. Goodwin, and E.W. Johns (Eur J. Biochem. 47:236-270) is a prominent nucleoplasmic protein; (e) quantitation of the major NHP indicates that they are present in a range of 2.2 X 10(5)-5.2 X 10(6) copies per diploid nucleus. Most of the electrophoretically visible NHP are probably structural rather than regulatory proteins; (f) actin, myosin, tubulin, and tropomyosin, if present at all, constitute a very minor fraction of the nuclear NHP. Contractile proteins constitute a major portion of the NHP only when the chromatin is prepared from crude cell lysates instead of from purified nuclei. These studies support the conclusion that there are no clear differences between many nucleoplasmic and chromatin-bound nonhistone proteins. Except for the histones, many of the intranuclear proteins appear to be in equilibrium between DNA, HnRNA, and the nucleoplasm.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin

Related Publications

D E Comings, and D C Harris
January 1981, Cellular and molecular biology, including cyto-enzymology,
D E Comings, and D C Harris
January 2021, Methods in molecular biology (Clifton, N.J.),
D E Comings, and D C Harris
August 1977, Journal of cell science,
D E Comings, and D C Harris
September 1998, Neurochemical research,
D E Comings, and D C Harris
October 1973, Biochemical and biophysical research communications,
D E Comings, and D C Harris
September 1973, Biochimica et biophysica acta,
Copied contents to your clipboard!