Cobalamin-dependent methionine synthase from Escherichia coli: involvement of zinc in homocysteine activation. 1997

C W Goulding, and R G Matthews
Biophysics Research Division and Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan, 48109-1055, USA.

Methionine synthase (MetH) is a modular protein with at least four distinct regions; amino acids 2-353 comprise a region responsible for binding and activation of homocysteine, amino acids 345-649 are thought to be involved in the binding and activation of methyltetrahydrofolate, amino acids 650-896 are responsible for binding of the prosthetic group methylcobalamin, and amino acids 897-1227 are involved in binding adensylmethionine and are required for reductive activation of enzyme in the cob(II)alamin form. Previous studies have shown that mutations of Cys310 or Cys311 to either alanine or serine result in loss of all detectable catalytic activity. These mutant proteins retain the ability to catalyze methyl transfer from methyltetrahydrofolate to exogenous cob(I)alamin, but have lost the ability to transfer methyl groups from exogenous methylcobalamin to homocysteine [Goulding, C. W., Postigo, D., and Matthews, R. G. (1997) Biochemistry 36, 8082-8091]. We now demonstrate that both MetH holoenzyme and a truncated MetH(2-649) protein, which lacks a cobalamin prosthetic group, contain 0.9 equiv of zinc, while the Cys310Ser and Cys311Ser mutant proteins contain less than 0.05 equiv of zinc. Addition of l-homocysteine to MetH(2-649) is accompanied by release of 1 equiv of protons/mol of protein, while addition of l-homocysteine to the Cys310Ser and Cys311Ser mutant truncated proteins does not result in proton release. The Cys310Ala and Cys311Ala mutant methylcobalamin holoenzymes have completely lost the ability to transfer the methyl group from methylcobalamin to homocysteine, suggesting that zinc is required for this reaction. Further evidence that zinc is required for catalytic activity comes from experiments in which the zinc is removed from MetH(2-1227). Removal of zinc from methylated wild-type holoenzyme by treatment with methyl methanethiolsulfonate and then with dithiothreitol and EDTA results in loss of the ability of the protein to catalyze methyl transfer from methyltetrahydrofolate to homocysteine. Reconstitution of the zinc-depleted holoenzyme results in incorporation of 0.4 equiv of zinc/mol of protein and partial restoration of the ability of the protein to catalyze homocysteine methylation.

UI MeSH Term Description Entries
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006710 Homocysteine A thiol-containing amino acid formed by a demethylation of METHIONINE. 2-amino-4-mercaptobutyric acid,Homocysteine, L-Isomer,2 amino 4 mercaptobutyric acid,Homocysteine, L Isomer,L-Isomer Homocysteine
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

C W Goulding, and R G Matthews
September 1996, Biochemistry,
C W Goulding, and R G Matthews
April 2012, Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry,
C W Goulding, and R G Matthews
March 1990, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!