An interleukin-2 receptor gamma chain mutation with normal thymus morphology. 1997

N Sharfe, and M Shahar, and C M Roifman
Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children and the University of Toronto, Toronto, Canada M5G 1X8.

One of the most common human immunodeficiencies is an X-linked condition arising from mutations of the gamma subunit of the interleukin-2 receptor (IL-2Rgamma). The IL-2Rgamma protein is one chain of the heterotrimeric (alpha, beta, gamma) IL-2 receptor, but also participates in the formation of the IL-4, 7, 9, and 15 receptor complexes. The diagnosis of X-linked SCID is usually relatively simple due to the distinctive immunological presentation; IL-2Rgamma-deficient patients typically lacking mature T lymphocytes (T-B+). However, it is becoming clear that this merely represents one extreme of a potential range of clinical presentations. We describe here a novel mutation of the human IL-2Rgamma chain (R222C) resulting in an unusual immunological phenotype. Although clinically immunodeficient, this patient has normal numbers of peripheral T and B cells, responds normally to mitogenic stimuli, and unusually, has a normal thymus gland. This IL-2Rgamma mutation is distinctive in that the protein is sufficiently stable to be expressed at the cell surface. While the T cell receptor repertoire appears complete, suggesting normal T cell differentiation occurs, patient T cells demonstrate a reduced ability to bind IL-2 and this appears sufficient to cause a deficiency in their ability to participate in antigenic responses. Early clinical recognition of this phenotype is critical as a delay in diagnosis may result in a fatal infection.

UI MeSH Term Description Entries
D007223 Infant A child between 1 and 23 months of age. Infants
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015375 Receptors, Interleukin-2 Receptors present on activated T-LYMPHOCYTES and B-LYMPHOCYTES that are specific for INTERLEUKIN-2 and play an important role in LYMPHOCYTE ACTIVATION. They are heterotrimeric proteins consisting of the INTERLEUKIN-2 RECEPTOR ALPHA SUBUNIT, the INTERLEUKIN-2 RECEPTOR BETA SUBUNIT, and the INTERLEUKIN RECEPTOR COMMON GAMMA-CHAIN. IL-2 Receptors,Interleukin-2 Receptor,Interleukin-2 Receptors,Receptors, IL-2,Receptors, T-Cell Growth Factor,T-Cell Growth Factor Receptors,IL-2 Receptor,IL2 Receptor,IL2 Receptors,Interleukin 2 Receptor,Receptor, TCGF,T-Cell Growth Factor Receptor,TCGF Receptor,TCGF Receptors,IL 2 Receptor,IL 2 Receptors,Interleukin 2 Receptors,Receptor, IL-2,Receptor, IL2,Receptor, Interleukin 2,Receptor, Interleukin-2,Receptors, IL 2,Receptors, IL2,Receptors, Interleukin 2,Receptors, T Cell Growth Factor,Receptors, TCGF,T Cell Growth Factor Receptor,T Cell Growth Factor Receptors
D016511 Severe Combined Immunodeficiency Group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. It is inherited as an X-linked or autosomal recessive defect. Mutations occurring in many different genes cause human Severe Combined Immunodeficiency (SCID). Bare Lymphocyte Syndrome,Immunodeficiency, Severe Combined,Omenn Syndrome,Immunodeficiency Syndrome, Severe Combined,Immunologic Deficiency, Severe Combined,Omenn's Syndrome,Reticuloendotheliosis, Familial,Severe Combined Immune Deficiency,Severe Combined Immunodeficiency Syndrome,Severe Combined Immunologic Deficiency,Bare Lymphocyte Syndromes,Combined Immunodeficiencies, Severe,Combined Immunodeficiency, Severe,Familial Reticuloendothelioses,Familial Reticuloendotheliosis,Immunodeficiencies, Severe Combined,Lymphocyte Syndrome, Bare,Lymphocyte Syndromes, Bare,Omenns Syndrome,Reticuloendothelioses, Familial,Severe Combined Immunodeficiencies,Syndrome, Bare Lymphocyte,Syndrome, Omenn,Syndrome, Omenn's,Syndromes, Bare Lymphocyte

Related Publications

N Sharfe, and M Shahar, and C M Roifman
December 1993, Science (New York, N.Y.),
N Sharfe, and M Shahar, and C M Roifman
December 1993, Science (New York, N.Y.),
N Sharfe, and M Shahar, and C M Roifman
December 1994, European journal of immunology,
N Sharfe, and M Shahar, and C M Roifman
December 1998, Cytokines, cellular & molecular therapy,
N Sharfe, and M Shahar, and C M Roifman
September 1994, European journal of immunology,
N Sharfe, and M Shahar, and C M Roifman
September 1994, European journal of immunology,
N Sharfe, and M Shahar, and C M Roifman
June 1993, The Journal of biological chemistry,
N Sharfe, and M Shahar, and C M Roifman
December 1994, Blood,
N Sharfe, and M Shahar, and C M Roifman
December 1996, European journal of pediatrics,
Copied contents to your clipboard!