Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. 1997

S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
Station de Pathologie Végétale, INRA, Villenave d'Ornon, France.

Hop stunt viroid (HSVd) is able to infect a number of herbaceous and woody hosts, such as grapevine, Citrus or Prunus plants. Previous phylogenetic analyses have suggested the existence of three major groups of HSVd isolates (plum-type, hop-type and citrus-type). The fact that these groups often contain isolates from only a limited number of isolation hosts prompted the suggestion that group-discriminating sequence variations could, in fact, represent host-specific sequence determinants which may facilitate or be required for replication in a given host. In an effort to further understand the relationships between HSVd and its different hosts, HSVd variants from eight naturally infected Prunus sources, including apricot, peach and Japanese plum have been cloned and sequenced. In total, ten molecular variants of HSVd have been identified, nine of which have not been described before. A detailed phylogenetic analysis of the existing HSVd sequences, including the new ones from Prunus determined in this work, points towards a redefinition of the grouping of variants of this viroid, since two new groups were identified, one of them composed of sequences described here. A bias for the presence of certain sequences and/or structures in certain hosts was observed, although no conclusive host-determinants were found. Surprisingly, our analysis revealed that a number of HSVd isolates probably derived from recombination events and that the previous hop-type group itself is likely to be the result of a recombination between members of the plum-type and citrus-type groups.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014772 Viroids A group of pathogens comprising the smallest known agents of infectious disease. They are unencapsulated and are capable of replicating autonomously in susceptible cells. Positively identified viroids composed of single-stranded RNA have been isolated from higher plants, but the existence of DNA viroids pathogenic to animals is suspected. Viroid
D016679 Genome, Viral The complete genetic complement contained in a DNA or RNA molecule in a virus. Viral Genome,Genomes, Viral,Viral Genomes
D017421 Sequence Analysis A multistage process that includes the determination of a sequence (protein, carbohydrate, etc.), its fragmentation and analysis, and the interpretation of the resulting sequence information. Sequence Determination,Analysis, Sequence,Determination, Sequence,Determinations, Sequence,Sequence Determinations,Analyses, Sequence,Sequence Analyses

Related Publications

S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
February 1989, Nucleic acids research,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
January 2020, PeerJ,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
July 1989, Nucleic acids research,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
January 2001, Virus genes,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
April 1984, Nucleic acids research,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
May 2024, Archives of microbiology,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
September 1988, Nucleic acids research,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
April 1982, Virology,
S A Kofalvi, and J F Marcos, and M C Cañizares, and V Pallás, and T Candresse
January 1995, Virus genes,
Copied contents to your clipboard!