Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization. 1997

I Sá-Nogueira, and S S Ramos
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal. sanoguei@itqb.unl.pt

The Bacillus subtilis araR locus (mapped at about 294 degrees on the genetic map) comprises two open reading frames with divergently arranged promoters, the regulatory gene, araR, encoding a repressor, and a partially cloned gene, termed araE by analogy to the Escherichia coli L-arabinose permease gene. Here, we report the cloning and sequencing of the entire araE gene encoding a 50.4-kDa polypeptide. The araE gene is monocistronic (as determined by Northern blot analysis), and its putative product is very similar to a number of prokaryotic proton-linked monosaccharide transporters (the group I family of membrane transport proteins). Insertional inactivation of the araE gene leads to a conditional Ara- phenotype dependent on the concentration of L-arabinose in the medium. Therefore, we assume that araE encodes a permease involved in L-arabinose transport into the cell. The araE promoter region contains -10 and -35 regions (as determined by primer extension analysis) very similar to those recognized by RNA polymerase containing the major vegetative-cell sigma factor sigmaA, and the -35 region of the transcription start point for araE is located 2 bp from the -35 region of the araR gene. Transcriptional studies demonstrated that the expression from the araE promoter is induced by L-arabinose, repressed by glucose, and negatively regulated by AraR. These observations are consistent with a model according to which in the absence of L-arabinose, AraR binds to a site(s) within the araE/araR promoter, preventing transcription from the araE promoter and simultaneously limiting the frequency of initiation from its own promoter; the addition of L-arabinose will allow transcription from the araE promoter and increase the frequency of initiation from the araR promoter.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001089 Arabinose L-Arabinose,L Arabinose
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto

Related Publications

I Sá-Nogueira, and S S Ramos
June 1988, Journal of bacteriology,
I Sá-Nogueira, and S S Ramos
November 1986, Journal of bacteriology,
I Sá-Nogueira, and S S Ramos
June 1994, Journal of bacteriology,
I Sá-Nogueira, and S S Ramos
June 2009, Applied and environmental microbiology,
I Sá-Nogueira, and S S Ramos
February 2010, Applied microbiology and biotechnology,
I Sá-Nogueira, and S S Ramos
October 1985, Journal of general microbiology,
Copied contents to your clipboard!