Genes regulating hypothalamic and pituitary development. 1997

J S Parks, and M E Adess, and M R Brown
Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

Several pituitary transcription factors have been identified in the last 3 years. They offer new insights into the processes that direct organogenesis, cell commitment, proliferation and differentiated function. All are DNA-binding proteins, but they have ties to different families of homeodomain proteins. They differ in their distribution and in the timing of their appearance and extinction. The Rathke's pouch homeobox protein (Rpx) has a paired-like homeodomain. In mice, it appears on embryonic day 8.5 (day e8.5) and is gone by day e14.5. Its targets for activation are unknown. Pituitary OTX has a tryptophan--phenylalanine--lysine motif in its homeodomain. It appears early and persists. It shows independent activation of the alpha-glycoprotein subunit (alpha-GSU) and pro-opiomelanocortin genes and co-operates with Pit-1 in activation of the growth hormone and prolactin genes. Pituitary Lim (P-Lim) protein also acts independently on the alpha-GSU gene, and acts in concert with Pit-1 to activate other genes. A fourth protein, termed the 'Prophet of Pit-1', or Prop-1, is the recently discovered cause of Ames dwarfism in mice. This paired-like protein is necessary for the subsequent expression of Pit-1 in somatotrophs, lactotrophs and thyrotrophs. Any or all of the newly discovered pituitary genes are candidates for mutations causing hypopituitarism in humans. As several are expressed transiently in tissues other than the pituitary during organogenesis, the phenotypes produced by mutations in these genes may prove to be complex.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J S Parks, and M E Adess, and M R Brown
January 1968, Recent progress in hormone research,
J S Parks, and M E Adess, and M R Brown
December 2019, Neuro endocrinology letters,
J S Parks, and M E Adess, and M R Brown
September 1980, Clinical obstetrics and gynecology,
J S Parks, and M E Adess, and M R Brown
June 1999, Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society,
J S Parks, and M E Adess, and M R Brown
January 2014, Handbook of clinical neurology,
J S Parks, and M E Adess, and M R Brown
June 1997, Annals of the New York Academy of Sciences,
J S Parks, and M E Adess, and M R Brown
August 2002, The European journal of neuroscience,
J S Parks, and M E Adess, and M R Brown
January 1981, Acta physiologica Polonica,
J S Parks, and M E Adess, and M R Brown
August 2007, European journal of endocrinology,
Copied contents to your clipboard!