Evaluation of the effects of a specific alpha 2-adrenoceptor antagonist, atipamezole, on alpha 1- and alpha 2-adrenoceptor subtype binding, brain neurochemistry and behaviour in comparison with yohimbine. 1997

A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
Orion Corporation, Orion Pharma, Turku, Finland.

In the present study we evaluated the alpha 1- and alpha 2-adrenoceptor subtype binding, central alpha 2-adrenoceptor antagonist potency, as well as effects on brain neurochemistry and behavioural pharmacology of two alpha 2-adrenoceptor antagonists, atipamezole and yohimbine. Atipamezole had higher selectivity for alpha 2- vs. alpha 1-adrenoceptors than yohimbine regardless of the subtypes studied. Both compounds had comparable affinity for the alpha 2A-, alpha 2C- and alpha 2B-adrenoceptors, but yohimbine had significantly lower affinity for the alpha 2D-subtype. This may account for the fact that significantly higher doses of yohimbine than atipamezole were needed for reversal of alpha 2-agonist (medetomidine)-induced effects in rats (mydriasis) and mice (sedation and hypothermia). The effect on central monoaminergic activity was estimated by measuring the concentrations of transmitters and their main metabolites in whole brain homogenate. At equally effective alpha 2-antagonising doses in the rat mydriasis model, both drugs stimulated central noradrenaline turnover (as reflected by increase in metabolite levels) to the same extent. Atipamezole increased dopaminergic activity only slightly, whereas yohimbine elevated central dopamine but decreased central 5-hydroxytryptamine turnover rates. In behavioural tests, atipamezole (0.1-10 mg/kg) did not affect motor activity but stimulated food rewarded operant (FR-10) responding (0.03-3 mg/kg) whereas yohimbine both stimulated (1 mg/kg) and decreased (> or = 3 mg/kg) behaviour in a narrow dose range in these tests. In the staircase test, both antagonists increased neophobia, but in the two compartment test only yohimbine (> or = 3 mg/kg) decreased exploratory behaviour. The dissimilar effects of the antagonists on neurochemistry and behaviour are thought to be caused by non alpha 2-adrenoceptor properties of yohimbine. In conclusion, the alpha 2-antagonist atipamezole blocked all alpha 2-adrenoceptor subtypes at low doses, stimulated central noradrenergic activity and had only slight effects on behaviour under familiar conditions, but increased neophobia. The low affinity for the alpha 2D-adrenoceptor combined with its unspecific effects complicates the use of yohimbine as pharmacological tool to study alpha 2-adrenoceptor physiology and pharmacology.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
January 2000, European journal of pharmacology,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
January 1995, European journal of pharmacology,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
January 2004, Epilepsy research,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
January 1997, Fundamental & clinical pharmacology,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
September 1992, Anesthesia and analgesia,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
October 1995, European journal of pharmacology,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
January 1992, Journal of neural transmission. Parkinson's disease and dementia section,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
July 2000, European journal of pharmacology,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
April 1996, European journal of pharmacology,
A Haapalinna, and T Viitamaa, and E MacDonald, and J M Savola, and L Tuomisto, and R Virtanen, and E Heinonen
July 2004, Autonomic & autacoid pharmacology,
Copied contents to your clipboard!