Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. 1997

M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
Laboratory of Cellular and Molecular Neuroendocrinology, Cajal Institute, CSIC, Madrid, Spain.

Purkinje cells synthesize insulin-like growth factor I and express insulin-like growth factor I receptors during their entire life. An additional source of insulin-like growth factor I for these cells is provided by climbing fiber afferents originating in the inferior olive nucleus. Recently we found that insulin-like growth factor I from the inferior olive is necessary for motor learning processes probably involving Purkinje cell synaptic plasticity. We now studied whether inferior olive insulin-like growth factor I influences the synaptic structure of Purkinje cells, because changes in synaptic morphology are related to neuronal plasticity events. We injected an insulin-like growth factor I antisense in the inferior olive of adult rats, a procedure which we previously found to elicit a significant and reversible decrease of insulin-like growth factor I levels in the contralateral cerebellum. Ultrastructural analysis of the cerebellar cortex of these animals showed a significant reduction in the size of dendritic spines on Purkinje cells of antisense-treated rats compared to controls. The decrease in spine size was linked to a diminished numerical density of dendritic spines on Purkinje cells, without affecting the numerical density of synapses in the molecular layer of the cerebellum. This reduction was not due to a change in the thickness of the molecular layer. Climbing or parallel fiber terminals were also unaffected. Taken together with previous findings, these results support a role for insulin-like growth factor I produced in the inferior olive in the maintenance of Purkinje cell synaptic plasticity.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009847 Olivary Nucleus A brainstem nuclear complex. in the hindbrain, also referred to as the olivary body. The olivary nuclear complex is a part of the MEDULLA OBLONGATA and the PONTINE TEGMENTUM. It is involved with motor control and is a major source of sensory input to the CEREBELLUM. Basal Nucleus, Olivary,Nucleus Basalis, Olivary,Olivary Body,Olivary Complex,Olivary Nuclei,Complex, Olivary,Nucleus, Olivary,Nucleus, Olivary Basal,Olivary Basal Nucleus,Olivary Bodies
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
December 2002, Cerebellum (London, England),
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
January 1992, The European journal of neuroscience,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
August 2023, Science advances,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
June 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
October 1983, Biochemical and biophysical research communications,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
September 1988, Molecular and cellular endocrinology,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
May 2008, Biochimica et biophysica acta,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
September 1993, Endocrinology,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
May 2003, The European journal of neuroscience,
M P Nieto-Bona, and L M Garcia-Segura, and I Torres-Alemán
January 1996, Brain research bulletin,
Copied contents to your clipboard!