Bioavailability of rumen bacterial selenium in mice using tissue uptake technique. 1997

A B Serra, and S D Serra, and K Shinchi, and T Fujihara
Faculty of Life and Environmental Science, Shimane University, Japan.

A tissue uptake experiment was conducted to determine the bioavailability of rumen bacterial Selenium (Se) in mice. The donor animal was wether fed a diet containing 0.2 mg Se/kg dietary dry matter (DM). Ruminal fluid was collected 2 h postprandially. Bacterial-rich precipitate was obtained by differential centrifugation of the ruminal fluids. This was later freeze-dried and mixed in the diet to be used in feeding the mice experiment. Thirty growing female mice with a body wt (mean +/- SD) of 21.4 +/- 0.74 g were housed in plastic cages (5 mice/cage) and allotted equally to three dietary treatments. Diet 1 and Diet 2 were formulated based on AIN-76, except that no Se supplementation in the form of selenite was made in the former. In Diet 3, rumen bacterial matter was 20% of the diet, which gave an equivalent of 0.1 mg Se/kg dietary DM. The other two diets, Diet 1 and Diet 2, had an Se content of 0.025 and 0.1 mg/kg dietary DM, respectively. A 7-d feeding commenced after 7 d of acclimatization of the semipurified diet. Results showed that those mice fed an Se- (selenite) supplemented diet (Diet 2) had higher (P < 0.05) tissue Se concentrations than those mice fed the other two diets. No statistical differences were observed on various tissue Se concentrations between Diet 1 and Diet 3, although the latter diet had higher values. Kidney and liver had the highest Se concentrations compared to the other tissues. This study concludes that bacterial Se collected from the rumen of wether is not fully available for absorption in the intestine of the mice.

UI MeSH Term Description Entries
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D012417 Rumen The first stomach of ruminants. It lies on the left side of the body, occupying the whole of the left side of the abdomen and even stretching across the median plane of the body to the right side. It is capacious, divided into an upper and a lower sac, each of which has a blind sac at its posterior extremity. The rumen is lined by mucous membrane containing no digestive glands, but mucus-secreting glands are present in large numbers. Coarse, partially chewed food is stored and churned in the rumen until the animal finds circumstances convenient for rumination. When this occurs, little balls of food are regurgitated through the esophagus into the mouth, and are subjected to a second more thorough mastication, swallowed, and passed on into other parts of the compound stomach. (From Black's Veterinary Dictionary, 17th ed) Rumens
D012643 Selenium An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. Selenium-80,Selenium 80
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A B Serra, and S D Serra, and K Shinchi, and T Fujihara
June 2016, Biological trace element research,
A B Serra, and S D Serra, and K Shinchi, and T Fujihara
March 2024, Animal : an international journal of animal bioscience,
A B Serra, and S D Serra, and K Shinchi, and T Fujihara
September 1988, Journal of animal science,
A B Serra, and S D Serra, and K Shinchi, and T Fujihara
January 1986, Annals of clinical research,
A B Serra, and S D Serra, and K Shinchi, and T Fujihara
January 1997, European journal of clinical nutrition,
A B Serra, and S D Serra, and K Shinchi, and T Fujihara
July 2021, JDS communications,
A B Serra, and S D Serra, and K Shinchi, and T Fujihara
November 2000, Journal of agricultural and food chemistry,
Copied contents to your clipboard!