Hypochlorous acid-induced base modifications in isolated calf thymus DNA. 1997

M Whiteman, and A Jenner, and B Halliwell
International Antioxidant Research Centre, University of London, Kings College, England. MATT.WHITEMAN@kcl.ac.uk

Exposure of calf thymus DNA to hypochlorous acid/hypochlorite leads to extensive DNA base modification. Large concentration-dependent increases in pyrimidine oxidation products [thymine glycol (cis/trans), 5-hydroxycytosine, 5-hydroxyuracil, 5-hydroxyhydantoin] but not purine oxidation products (8-hydroxyguanine, 2- and 8-hydroxyadenine, FAPy guanine, FAPy adenine) were observed at pH 7.4. In addition, large increases in 5-chlorouracil (probably formed from 5-chlorocytosine during sample preparation), a novel chlorinated base, were observed. Addition of HOCl to DNA already damaged by .OH generated by a mixture of ascorbate, copper(II) chloride, and hydrogen peroxide showed that hypochlorous acid led to a loss of 8-hydroxyguanine, 2- and 8-hydroxyadenine, FAPy guanine, FAPy adenine, and 5-hydroxycytosine in a concentration- and pH-dependent manner. Nevertheless, time course studies suggested that the formation of purine oxidation products in isolated DNA by hypochlorous acid was not a major oxidation pathway. If this pattern of damage, especially the production of 5-chlorocytosine, is unique to hypochlorous acid, it might act as a "fingerprint" of damage to DNA by HOCl.

UI MeSH Term Description Entries
D006997 Hypochlorous Acid An oxyacid of chlorine (HClO) containing monovalent chlorine that acts as an oxidizing or reducing agent. Hypochlorite,Hypochlorous Acids
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Whiteman, and A Jenner, and B Halliwell
January 2018, International journal of biological macromolecules,
M Whiteman, and A Jenner, and B Halliwell
June 2003, Carcinogenesis,
M Whiteman, and A Jenner, and B Halliwell
March 1985, Photochemistry and photobiology,
M Whiteman, and A Jenner, and B Halliwell
July 1995, FEBS letters,
M Whiteman, and A Jenner, and B Halliwell
July 1982, Molecular pharmacology,
M Whiteman, and A Jenner, and B Halliwell
February 1970, Biochimica et biophysica acta,
M Whiteman, and A Jenner, and B Halliwell
April 1974, Biochemical and biophysical research communications,
M Whiteman, and A Jenner, and B Halliwell
May 2000, Pharmacological research,
M Whiteman, and A Jenner, and B Halliwell
May 1947, Chimia,
M Whiteman, and A Jenner, and B Halliwell
October 2005, Radiation research,
Copied contents to your clipboard!