GDNF induces branching and increased cell proliferation in the ureter of the mouse. 1997

C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
Biolabs, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.

The secreted signaling molecule GDNF is expressed in the metanephric mesenchyme and has recently been implicated as a factor necessary for development of the metanephric kidney. We have examined the effects of GDNF on mouse kidney explants. We show that GDNF increases cell proliferation in ureter tips. There is an increase in the number of ureter tips and expansion and fusion of adjacent tips and some tips appear to grow toward the source of GDNF. These events are accompanied by transcriptional upregulation of several genes localized to the tips, including its own receptor, c-ret, the transcription factor Sox9, and the signal Wnt-11. These results support a model in which GDNF supplied by the mesenchyme regulates growth and branching in the metanephric kidney through the local regulation of ureter tip-specific factors.

UI MeSH Term Description Entries
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008297 Male Males
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
January 2000, Development (Cambridge, England),
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
January 2005, Developmental cell,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
April 2000, Pediatric research,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
December 1997, Current opinion in cell biology,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
January 1999, The International journal of developmental biology,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
February 2010, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
December 2011, Developmental biology,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
March 2011, Theory in biosciences = Theorie in den Biowissenschaften,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
March 2014, Cytotechnology,
C V Pepicelli, and A Kispert, and D H Rowitch, and A P McMahon
June 1998, British journal of haematology,
Copied contents to your clipboard!