Different effects of oxidative stress on activation of transcription factors in primary cultured rat neuronal and glial cells. 1997

E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
Department of Neuroscience, Institute of Molecular and Cellular Medicine, Okayama University Medical School, Japan.

We compared the cytotoxic effects of oxidative stress on neuronal and glial cells in vitro by examining the cell viability and changes in DNA-binding activities of transcription factors, AP-1 and CREB, using Trypan blue exclusion and electrophoretic mobility shift assay (EMSA), respectively. Neurotoxin 6-hydroxydopamine (6-OHDA) and H2O2 reduced the viability of both types of cells in time- and concentration-dependent manner. Both neurotoxins dose-dependently decreased DNA-binding activities in neuronal cells. The results of cell viability assay suggested that these changes may reflect the reduction in neuronal cell viability. In contrast, both reagents increased DNA-binding activities in glial cells, although they decreased cell numbers. These results suggest that the effects of oxidative stress on transcription factors is different in neuronal and glial cells. We also examined the effect of brain-derived neurotrophic factor (BDNF) on 6-OHDA- or H2O2-induced changes in DNA-binding activities. In neuronal cells, pre-treatment with BDNF prevented the decrease in DNA-binding activities induced by 6-OHDA or H2O2. In glial cells, the effect of BDNF on oxidative stress-induced changes in DNA-binding activities in the 6-OHDA-treated group were opposite to those in H2O2-treated group. Our results suggest that 6-OHDA and H2O2 may exert their cytotoxic mechanisms through different signal transduction systems.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D015345 Oligonucleotide Probes Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin. Oligodeoxyribonucleotide Probes,Oligonucleotide Probe,Oligoribonucleotide Probes,Probe, Oligonucleotide,Probes, Oligodeoxyribonucleotide,Probes, Oligonucleotide,Probes, Oligoribonucleotide
D016627 Oxidopamine A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals. 6-Hydroxydopamine,6-OHDA,Oxidopamine Hydrobromide,Oxidopamine Hydrochloride,6 Hydroxydopamine,Hydrobromide, Oxidopamine,Hydrochloride, Oxidopamine

Related Publications

E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
July 2007, Toxicology letters,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
December 2008, Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
April 1996, Brain research. Molecular brain research,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
January 2002, Biochemical pharmacology,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
February 2004, European journal of pharmacology,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
June 2001, Liver,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
January 2005, Journal of molecular neuroscience : MN,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
August 1999, Carcinogenesis,
E Iwata, and M Asanuma, and S Nishibayashi, and Y Kondo, and N Ogawa
January 2009, Neurochemistry international,
Copied contents to your clipboard!