Cooperative and competitive protein interactions at the hsp70 promoter. 1997

P B Mason, and J T Lis
Department of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA.

Drosophila heat shock factor (HSF) binds to specific sequence elements of heat shock genes and can activate their transcription 200-fold. Though HSF has an acidic activation domain, the mechanistic details of heat shock gene activation remain undefined. Here we report that HSF interacts directly with the general transcription factor TBP (TATA-box binding protein), and these two factors bind cooperatively to heat shock promoters. A third factor that binds heat shock promoters, GAGA factor, also interacts with HSF and further stabilizes HSF binding to heat shock elements (HSEs). The interaction of HSF and TBP is explored in some detail here and is shown to be mediated by residues in both the amino- and carboxyl-terminal portions of HSF. This HSF/TBP interaction can be specifically disrupted by competition with the potent acidic transcriptional activator VP16. We further show that the acidic domain of the largest subunit of Drosophila RNA polymerase II (Pol II) associates with TBP in vitro and is specifically displaced from TBP upon addition of HSF. The region of TBP that mediates both HSF and Pol II acidic domain binding maps to the conserved carboxyl-terminal repeats and depends on at least one of the TBP residues known to be contacted by VP16 and to be critical for transcription activation. We discuss these findings in the context of a model in which HSF triggers hsp70 transcription by freeing the hsp70 promoter-paused Pol II from the constraints on elongation caused by the affinity of Pol II for general transcription factors.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D016385 TATA Box A conserved A-T rich sequence which is contained in promoters for RNA polymerase II. The segment is seven base pairs long and the nucleotides most commonly found are TATAAAA. Hogness Box,Box, Hogness,Box, TATA

Related Publications

P B Mason, and J T Lis
October 2006, The Journal of biological chemistry,
P B Mason, and J T Lis
January 1999, Visual neuroscience,
P B Mason, and J T Lis
December 2011, Nature communications,
P B Mason, and J T Lis
January 1986, Cold Spring Harbor symposia on quantitative biology,
P B Mason, and J T Lis
September 2021, Nature communications,
P B Mason, and J T Lis
September 2001, The EMBO journal,
Copied contents to your clipboard!