Effects of microinjections of cholecystokinin and neurotensin into lateral hypothalamus and ventral mesencephalon on intracranial self-stimulation. 1997

J Singh, and T Desiraju, and T R Raju
Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India.

Changes in intracranial self-stimulation (ICSS) evoked from ventral tegmental area-substantia nigra (VTA-SN) and lateral hypothalamus-medial forebrain bundle (LH-MFB) before and after microinjections of sulfated cholecystokinin octapeptide (CCK-8S) and unsulfated cholecystokinin (CCK-8US), neurotensin tridecapeptide ([D-Tyr11]NT(1-13) or [DTrp11]NT(1-13)) into either VTA-SN or LH-MFB were assessed. The current intensity was fixed at a level to obtain 60-70% of the maximal asymptotic rate. CCK-8S (0.10 microg/0.5 microl and 0.25 microg/0.5 microl) into VTA-SN resulted in dose-dependent decreases in VTA-SN ICSS of 38-42% and 78-92%, respectively, without affecting the ICSS of LH-MFB. Similar doses of CCK-8S injected into LH-MFB changed neither LH-MFB ICSS nor VTA-SN ICSS. CCK-8Us injected into VTA-SN or LH-MFB had no effect on ICSS in either site. Intra-VTA-SN injections of the neurotensin-1 (NT1) receptor agonist [DTyr11]NT(1-13) and the NT1 receptor antagonist [D-Trp11]NT(1-13) at doses of 5 microg/0.5 microl and 10 microg/0.5 microl decreased VTA-SN ICSS. NT1 receptor agonist and antagonist injections did not alter LH-MFB ICSS in any significant manner. Similar injections of these peptides into LH-MFB did not change the responding rates for LH-MFB ICSS or VTA-SN ICSS. Increasing the current intensity reversed the inhibitory effect of CCK-8S and [D-Trp11]NT(1-13) on VTA-SN ICSS and restored basal preinjection rates of responding. These results suggest that CCK(A) and NT1 receptor mechanisms in the ventral tegmentum in association with dopamine neurotransmission may be important in mediating the rewarding effects of VTA-SN ICSS but not LH-MFB ICSS.

UI MeSH Term Description Entries
D007026 Hypothalamic Area, Lateral Area in the hypothalamus bounded medially by the mammillothalamic tract and the anterior column of the FORNIX (BRAIN). The medial edge of the INTERNAL CAPSULE and the subthalamic region form its lateral boundary. It contains the lateral hypothalamic nucleus, tuberomammillary nucleus, lateral tuberal nuclei, and fibers of the MEDIAL FOREBRAIN BUNDLE. Lateral Hypothalamic Area,Lateral Hypothalamic Nucleus,Tuberomammillary Nucleus,Accessory Nucleus of the Ventral Horn,Area Hypothalamica Lateralis,Area Lateralis Hypothalami,Lateral Hypothalamus,Lateral Tuberal Nuclei,Lateral Tuberal Nucleus,Area Hypothalamica Laterali,Area Lateralis Hypothalamus,Area, Lateral Hypothalamic,Areas, Lateral Hypothalamic,Hypothalami, Area Lateralis,Hypothalamic Areas, Lateral,Hypothalamic Nucleus, Lateral,Hypothalamica Laterali, Area,Hypothalamica Lateralis, Area,Hypothalamus, Area Lateralis,Hypothalamus, Lateral,Lateral Hypothalamic Areas,Laterali, Area Hypothalamica,Lateralis Hypothalami, Area,Lateralis Hypothalamus, Area,Lateralis, Area Hypothalamica,Nuclei, Lateral Tuberal,Nucleus, Lateral Hypothalamic,Nucleus, Lateral Tuberal,Nucleus, Tuberomammillary,Tuberal Nuclei, Lateral,Tuberal Nucleus, Lateral
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009496 Neurotensin A biologically active tridecapeptide isolated from the hypothalamus. It has been shown to induce hypotension in the rat, to stimulate contraction of guinea pig ileum and rat uterus, and to cause relaxation of rat duodenum. There is also evidence that it acts as both a peripheral and a central nervous system neurotransmitter.
D011949 Receptors, Cholecystokinin Cell surface proteins that bind cholecystokinin (CCK) with high affinity and trigger intracellular changes influencing the behavior of cells. Cholecystokinin receptors are activated by GASTRIN as well as by CCK-4; CCK-8; and CCK-33. Activation of these receptors evokes secretion of AMYLASE by pancreatic acinar cells, acid and PEPSIN by stomach mucosal cells, and contraction of the PYLORUS and GALLBLADDER. The role of the widespread CCK receptors in the central nervous system is not well understood. CCK Receptors,Caerulein Receptors,Cholecystokinin Octapeptide Receptors,Cholecystokinin Receptors,Pancreozymin Receptors,Receptors, CCK,Receptors, Caerulein,Receptors, Pancreozymin,Receptors, Sincalide,Sincalide Receptors,CCK Receptor,CCK-4 Receptors,CCK-8 Receptors,Cholecystokinin Receptor,Receptors, CCK-4,Receptors, CCK-8,Receptors, Cholecystokinin Octapeptide,CCK 4 Receptors,CCK 8 Receptors,Octapeptide Receptors, Cholecystokinin,Receptor, CCK,Receptor, Cholecystokinin,Receptors, CCK 4,Receptors, CCK 8
D002766 Cholecystokinin A peptide, of about 33 amino acids, secreted by the upper INTESTINAL MUCOSA and also found in the central nervous system. It causes gallbladder contraction, release of pancreatic exocrine (or digestive) enzymes, and affects other gastrointestinal functions. Cholecystokinin may be the mediator of satiety. Pancreozymin,CCK-33,Cholecystokinin 33,Uropancreozymin
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012653 Self Stimulation The act or process of inducing or increasing the level of arousal in oneself. It can be observed in various situations; for example, infants who are understimulated may explore their surroundings or babble to themselves.(https://dictionary.apa.org/self-stimulation accessed 12/30/2020) ICSS Intracranial Self-Stimulation,Intracranial Self Stimulation,Self-Stimulation,Intracranial Self Stimulations,Self Stimulation, Intracranial,Self Stimulations,Self Stimulations, Intracranial,Self-Stimulations,Stimulation, Self,Stimulations, Self

Related Publications

J Singh, and T Desiraju, and T R Raju
January 1987, Experimental brain research,
J Singh, and T Desiraju, and T R Raju
March 1977, Pharmacology, biochemistry, and behavior,
J Singh, and T Desiraju, and T R Raju
January 1984, Physiology & behavior,
J Singh, and T Desiraju, and T R Raju
January 1967, Experimental brain research,
J Singh, and T Desiraju, and T R Raju
November 2007, Neuroscience letters,
Copied contents to your clipboard!