Plasma LDL oxidation leads to its aggregation in the atherosclerotic apolipoprotein E-deficient mice. 1997

I Maor, and T Hayek, and R Coleman, and M Aviram
Lipid Research Laboratory, Rambam Medical Center, Haifa, Israel.

Two major modifications of low density lipoprotein (LDL) that can lead to macrophage cholesterol accumulation and foam cell formation include its oxidation and aggregation. To find out whether these modifications can already occur in vivo in plasma and whether they are related to each other, the oxidation and aggregation states of plasma LDL were analyzed in the apolipoprotein E-deficient (E degree) transgenic mice during their aging (and the development of atherosclerosis), in comparison to plasma LDL from control mice. Plasma LDL from the E degree mice was already minimally oxidized at 1 month of age in comparison to control mice LDL, and it further oxidized with age in the E degree mice but not in the control mice. At 6 months of age, the contents of the E degree mice LDL-associated cholesteryl ester hydroperoxides, thiobarbituric acid reactive substances, and conjugated dienes were higher by two, three, and twofold, respectively, in comparison to LDL from the young, 1-month-old E degree mice. We also investigated the LDL aggregation state in E degree mice. In the young E degree mice, LDL oxidation was shown in comparison to control mice, but in both groups of young mice their LDL was not aggregated. In the E degree mice, however, the LDL aggregation state substantially increased with age, by as much as 125% at 6 months of age compared to the 1-month-old mice, whereas no significant aggregation could be detected in plasma LDL from control mice at the same age. To question the possible effect of LDL oxidation on its subsequent aggregation, LDL oxidation was induced by either copper ions, or by the free radical generator 2,2-azobis-2-amidinopropane hydrochloride, or by hypochlorite. All these oxidative systems led to LDL oxidation (to different degrees) and resulted in a similar, substantial LDL aggregation. These oxidation systems also enhanced the susceptibility of LDL to aggregation (induced by vortexing) by 23%, 28%, or 40%, respectively. To further analyze the relationships between the lipoprotein oxidation and its aggregation, LDL (0.1 mg of protein/mL) was incubated with 5 mumol/L CuSO4 at 37 degrees C in the absence or presence of the antioxidant, vitamin E (25 mumol/L). In the absence of vitamin E, a time-dependent increment in LDL oxidation was noted, which reached a plateau after 2 hours of incubation. LDL aggregation, however, only started at this time point and reached a plateau after only 5 hours of incubation. In the presence of vitamin E, both LDL oxidation and its aggregation were reduced at all time points studied. We extended the vitamin E study to the in vivo situation, and the effect of vitamin E supplementation to the E degree mice (50 mg.kg-1.d-1 for a 3-month period) on their plasma LDL oxidation and aggregation states was studied. Vitamin E supplementation to these mice resulted in a 35% reduction in the LDL oxidation state and in parallel, the LDL aggregation state was also reduced by 23%. These reductions in LDL oxidation and aggregation states were accompanied by a 33% reduction in the aortic lesion area, in comparison to nontreated E degree mice. We conclude that in E degree mice, LDL oxidation, which already took place in the plasma, can lead to the lipoprotein aggregation. These modified forms of LDL were shown to be taken up by macrophages at an enhanced rate, leading to foam cell formation. Thus, the use of an appropriate antioxidant can inhibit the formation of both atherogenic forms of LDL.

UI MeSH Term Description Entries
D006997 Hypochlorous Acid An oxyacid of chlorine (HClO) containing monovalent chlorine that acts as an oxidizing or reducing agent. Hypochlorite,Hypochlorous Acids
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000578 Amidines Derivatives of oxoacids RnE(

Related Publications

I Maor, and T Hayek, and R Coleman, and M Aviram
January 2017, Experimental biology and medicine (Maywood, N.J.),
I Maor, and T Hayek, and R Coleman, and M Aviram
July 2015, Thrombosis and haemostasis,
I Maor, and T Hayek, and R Coleman, and M Aviram
October 1998, Atherosclerosis,
I Maor, and T Hayek, and R Coleman, and M Aviram
December 2011, The Journal of surgical research,
I Maor, and T Hayek, and R Coleman, and M Aviram
January 2016, PloS one,
I Maor, and T Hayek, and R Coleman, and M Aviram
January 2000, Advances in experimental medicine and biology,
I Maor, and T Hayek, and R Coleman, and M Aviram
September 1996, Proceedings of the National Academy of Sciences of the United States of America,
I Maor, and T Hayek, and R Coleman, and M Aviram
May 2016, Cardiovascular research,
Copied contents to your clipboard!