Synergistic activation of guinea-pig cardiac cystic fibrosis transmembrane conductance regulator by the tyrosine kinase inhibitor genistein and cAMP. 1997

L M Shuba, and T F McDonald
Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.

1. The regulation of cardiac Cl- current (ICl) by tyrosine and serine/threonine phosphorylation was examined in guinea-pig and rat ventricular myocytes. The protein tyrosine kinase (PTK) inhibitor genistein (GST) and phosphotyrosine phosphatase (PTP) inhibitor sodium orthovanadate (VO4) were used to modify tyrosine phosphorylation, whereas forskolin (FSK), cAMP, and other agents were used to modify cytoplasmic cAMP concentration and protein kinase A (PKA) phosphorylation. 2. Low concentrations (0.1 microM) of FSK did not activate the PKA-regulated cystic fibrosis transmembrane regulator (CFTR) ICl in guinea-pig ventricular myocytes, but strongly potentiated activation of an ICl by 20-100 microM GST. The potentiation did not occur when GST was replaced by PTK-inactive daidzein, and it was strongly inhibited by 1 mM VO4. 3. Potentiation by 0.1 microM FSK was linked to a small stimulation of the adenylate cyclase-cAMP-PKA pathway. The potentiation was not mimicked by inactive 1,9-dideoxyforskolin, and was inhibited by muscarinic stimulation (ACh) and by a PKA inhibitor. Internal application of a cAMP solution that alone was too weak to activate CFTR ICl strongly potentiated the activation of ICl by 50 microM GST and occluded potentiation by 0.1 microM FSK. 4. The foregoing suggests that potentiated ICl flows through cAMP-dependent CFTR channels. In agreement with this interpretation, GST did not increase ICl when CFTR was maximally activated by a high concentration (5 microM) of FSK and okadaic acid, and neither GST nor GST plus FSK activated an ICl in CFTR-deficient rat myocytes. The lack of effect in rat myocytes was not due to the absence of functional, channel-relevant PKA and PTK-PTP systems, because (as in guinea-pig myocytes) L-type Ca2+ current (ICa,L) was stimulated by FSK and inhibited in a VO4-reversible manner by GST. 5. The synergistic activation of CFTR by low concentrations of FSK and GST cannot be explained by either a GST-induced elevation of cAMP concentration or inhibition of serine/threonine phosphatase. Rather, it appears to be due to tyrosine dephosphorylation that facilitates PKA-mediated phosphorylation of the channels.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477

Related Publications

L M Shuba, and T F McDonald
October 1998, The American journal of physiology,
L M Shuba, and T F McDonald
October 2019, Molecular therapy : the journal of the American Society of Gene Therapy,
L M Shuba, and T F McDonald
February 2001, The Journal of pharmacology and experimental therapeutics,
L M Shuba, and T F McDonald
January 1993, Annual review of physiology,
L M Shuba, and T F McDonald
April 2006, The Journal of biological chemistry,
Copied contents to your clipboard!