Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones. 1997

Z Li, and G I Hatton
Department of Neuroscience, University of California at Riverside 92521, USA.

1. Whole-cell patch clamp recordings were obtained from sixty-five rat supraoptic nucleus (SON) neurones in brain slices to investigate ionic mechanisms underlying depolarizing after-potentials (DAPs). When cells were voltage clamped around -58 mV, slow inward currents mediating DAPs (IDAP), evoked by three brief depolarizing pulses, had a peak of 17 +/- 1 pA (mean +/- S.E.M.) and lasted for 2.8 +/- 0.1 s. 2. No significant differences in the amplitude and duration were observed when one to three preceding depolarizing pulses were applied, although there was a tendency for twin pulses to evoke larger IDAP than a single pulse. The IDAP was absent when membrane potentials were more negative than -70 mV. In the range -70 to -50 mV, IDAP amplitudes and durations increased as the membrane became more depolarized, with an activation threshold of -65.7 +/- 0.7 mV. 3. IDAP with normal amplitude and duration could be evoked during the decay of a preceding IDAP. As frequencies of depolarizing pulses rose from 2 to 20 Hz, the times to peak IDAP amplitude were reduced but the amplitudes and durations did not change. 4. A consistent reduction in membrane conductance during the IDAP was observed in all SON neurones tested, and averaged 34.6 +/- 3.3%. Small hyperpolarizing pulses used to measure membrane conductances appeared not to disturb major ionic mechanisms underlying IDAP, since the slope and duration of IDAP with and without test pulses were similar. 5. The IDAP had an averaged reversal potential of -87.4 +/- 1.6 mV, which was close to the K+ equilibrium potential. An elevation in [K+]o reduced or abolished the IDAP, and shifted its reversal potential toward more positive levels. Perifusion of slices with 7.5-10 mM TEA, a K+ channel blocker, reversibly suppressed the IDAP. 6. Both Na+ and Ca2+ currents failed to induce an IDAP-like current during perifusion of slices with media containing high [K+]o or TEA. However, the IDAP was abolished by replacing external Ca2+ with Co2+, or replacing 82% of external Na+ with choline or Li+. Perifusion of slices with media containing 1-2 microM TTX also reduced IDAP by 55.5 +/- 9.0%. 7. These results suggest that the generation of DAPs in SON neurones mainly involves a reduction in outward K+ current(s), which probably has little or no inactivation and can be inhibited by [Ca2+]i transients, due to Ca2+ influx during action potentials and Ca2+ release from internal stores. Na+ influx might provide a permissive influence for Ca(2+)-induced reduction of K+ conductances and/or help to raise [Ca2+]i via reverse-mode Ca(2+)-Na+ exchange. Other conductances, making minor contributions to the IDAP, may also be involved.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

Z Li, and G I Hatton
July 1986, The Journal of physiology,
Z Li, and G I Hatton
December 1992, The Journal of physiology,
Z Li, and G I Hatton
June 2016, Journal of neuroendocrinology,
Z Li, and G I Hatton
April 2012, Journal of neuroendocrinology,
Copied contents to your clipboard!