Local opioid inhibition and morphine dependence of supraoptic nucleus oxytocin neurones in the rat in vivo. 1997

M Ludwig, and C H Brown, and J A Russell, and G Leng
Department of Physiology, University Medical School, Edinburgh, UK. Mike.Ludwig@ed.ac.uk

1. Single neurones of the rat supraoptic nucleus were recorded during microdialysis of naloxone onto the ventral surface of the nucleus in anaesthetized rats. We used this combination of techniques to test whether the acute or chronic effects of systemically or centrally applied opioids upon oxytocin cell activity were due to actions of the opioids within the nucleus itself. 2. Supraoptic nucleus oxytocin neurones were identified antidromically and by an excitatory response to intravenously injected cholecystokinin. Acute intravenous injection of the kappa-agonist U50488H or the mu-agonist morphine (1-5 mg kg-1) reduced the firing rate of identified oxytocin neurones by 97.7 +/- 4.8% (n = 6) and 94.1 +/- 4.1% (n = 7), respectively. The inhibition by each of these opioids was completely reversed after administration by microdialysis (retrodialysis) of the opioid antagonist naloxone (0.1-1.0 microgram microliter-1 at 2 microliters min-1) onto the exposed ventral surface of the supraoptic nucleus. 3. Retrodialysis of naloxone (0.1-10.0 micrograms microliter-1) onto the supraoptic nucleus of rats made dependent by intracerebroventricular morphine infusion for 5 days increased the firing rate of oxytocin neurones from 0.9 +/- 0.4 to 3.1 +/- 0.7 spikes s-1 (P < 0.05, n = 6). This increase in firing rate from basal was 58.5 +/- 15.1% of that following subsequent intravenously injected naloxone (5 mg kg-1). 4. Thus, the acute inhibition of supraoptic nucleus oxytocin neurones which results from systemic administration of opioid agonists primarily occurs within the supraoptic nucleus itself, since the antagonist naloxone was effective when given into the supraoptic nucleus. Furthermore, oxytocin neurones develop morphine dependence by a mechanism which is distinct from an action on their distant afferent inputs. Nevertheless, withdrawal excitation of these afferent inputs may enhance the magnitude of oxytocin neurone withdrawal excitation.

UI MeSH Term Description Entries
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009021 Morphine Dependence Strong dependence, both physiological and emotional, upon morphine. Morphine Abuse,Morphine Addiction,Abuse, Morphine,Addiction, Morphine,Dependence, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013495 Supraoptic Nucleus Hypothalamic nucleus overlying the beginning of the OPTIC TRACT. Accessory Supraoptic Group,Nucleus Supraopticus,Supraoptic Nucleus of Hypothalamus,Accessory Supraoptic Groups,Group, Accessory Supraoptic,Groups, Accessory Supraoptic,Hypothalamus Supraoptic Nucleus,Nucleus, Supraoptic,Supraoptic Group, Accessory,Supraoptic Groups, Accessory,Supraopticus, Nucleus

Related Publications

M Ludwig, and C H Brown, and J A Russell, and G Leng
May 2010, Journal of neuroendocrinology,
M Ludwig, and C H Brown, and J A Russell, and G Leng
May 2000, Brain research bulletin,
M Ludwig, and C H Brown, and J A Russell, and G Leng
January 1985, Nature,
M Ludwig, and C H Brown, and J A Russell, and G Leng
February 1988, The Journal of physiology,
M Ludwig, and C H Brown, and J A Russell, and G Leng
March 2001, British journal of pharmacology,
M Ludwig, and C H Brown, and J A Russell, and G Leng
January 1995, Advances in experimental medicine and biology,
M Ludwig, and C H Brown, and J A Russell, and G Leng
September 1998, Experimental brain research,
M Ludwig, and C H Brown, and J A Russell, and G Leng
April 1997, The Journal of physiology,
M Ludwig, and C H Brown, and J A Russell, and G Leng
August 1991, The Journal of physiology,
M Ludwig, and C H Brown, and J A Russell, and G Leng
January 1982, Neuroscience,
Copied contents to your clipboard!