Relationship of substance P to afferent characteristics of dorsal root ganglion neurones in guinea-pig. 1997

S N Lawson, and B A Crepps, and E R Perl
Department of Physiology Medical School University Walk Bristol, UK. sally.lawson@bristol.ac.uk

1. The relationship between the afferent properties and substance P-like immunoreactivity (SP-LI) of L6 and S1 dorsal root ganglion (DRG) neuronal somata was examined in anaesthetized guinea-pigs. Glass pipette microelectrodes filled with fluorescent dyes were used to make intracellular recordings and to label DRG somata. The dorsal root conduction velocity (CV) and the afferent receptive properties of each unit were categorized according to criteria established in other species. Categories included a variety of low threshold mechanoreceptive classes, innocuous thermoreceptive and several nociceptive classes. Nociceptive units were further subdivided on the basis of CV and the locus of the receptive field (superficial cutaneous, deep cutaneous or subcutaneous). 2. SP-LI was determined using the avidin-biotin complex method and the relative staining intensity determined by image analysis. The possible significance of labelling intensity is discussed. Clear SP-LI appeared in twenty-nine of 117 dye-labelled neurones. All SP-LI positive units with identified receptive properties were nociceptive but not all categories of nociceptors were positive. The intensity of SP-LI labelling varied, often systematically, in relation to afferent properties. There was a tendency for nociceptive neurones with slower CVs and/or smaller cell bodies to show SP-LI. 3. Nineteen of fifty-one C fibre neurones showed SP-LI. Fewer than half the C polymodal nociceptors (CPMs) were positive. The most intensely labelled units were the deep cutaneous nociceptors and some of the CPMs in glabrous skin. C low threshold mechanoreceptors and cooling-sensitive units did not show SP-LI. 4. Ten of sixty-six A fibre neurones exhibited SP-LI, including eight of sixteen A delta nociceptors and two of fifteen A alpha/beta nociceptors. A fibre neurones exhibiting SP-LI included seven of eight deep cutaneous mechanical nociceptors and some superficial cutaneous mechano-heat nociceptors of hairy skin. In contrast, none of twenty superficial cutaneous A high threshold mechanoreceptor units or the thirty-five A fibre low threshold units (D-hair and other units) showed detectable SP-LI. 5. We conclude that SP-LI labelling in guinea-pig DRG neurones is related to (a) afferent receptive properties, (b) the tissue in which the peripheral receptive terminals are located, (c) the CV and (d) the soma size.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea

Related Publications

S N Lawson, and B A Crepps, and E R Perl
July 1986, Neuroscience letters,
S N Lawson, and B A Crepps, and E R Perl
August 1987, Pflugers Archiv : European journal of physiology,
S N Lawson, and B A Crepps, and E R Perl
October 1986, Pflugers Archiv : European journal of physiology,
S N Lawson, and B A Crepps, and E R Perl
November 1997, The Journal of physiology,
S N Lawson, and B A Crepps, and E R Perl
November 2014, Molecular pain,
S N Lawson, and B A Crepps, and E R Perl
April 1989, The Journal of physiology,
S N Lawson, and B A Crepps, and E R Perl
September 2000, European journal of pharmacology,
Copied contents to your clipboard!