Cytokine-induced neutrophil transepithelial migration is dependent upon epithelial orientation. 1997

E J Carolan, and D A Mower, and T B Casale
Department of Internal Medicine, University of Iowa College of Medicine, and Veterans Administration Medical Center, Iowa City, USA.

The mechanisms by which mediators and cytokines stimulate neutrophils to migrate across the lung epithelium are still unclear. We hypothesized that neutrophil transepithelial migration depends upon polarity of the epithelium. We therefore compared neutrophil migration through human lung Type II-like alveolar epithelial cell line (A549) monolayers grown on the upper versus lower surface of permeable filters to simulate apical-to-basal and basal-to-apical movement of neutrophils, respectively. The classic chemoattractants formyl-methionylleucylphenylalanine (FMLP), leukotriene B4 (LTB4), and interleukin-8 (IL-8) induced equivalent neutrophil transepithelial migration in the apical-to-basal and basal-to-apical directions. However, the degree of neutrophil transepithelial migration was significantly greater in the basal-to-apical direction in response to either IL-1beta or tumor necrosis factor-alpha (TNF-alpha). Enhanced TNF-alpha-induced neutrophil migration through A549 monolayers in the basal-to-apical direction occurred regardless of whether the TNF-alpha was above or below the filter/monolayer complex. Actinomycin D pretreatment of A549 monolayers had no effect on FMLP-induced neutrophil transepithelial migration, but markedly (about 75%) inhibited both TNF-alpha- and IL-1beta-induced neutrophil transepithelial migration, regardless of monolayer orientation. Thus, in contrast to classic chemoattractants, IL-1beta and TNF-alpha induced greater neutrophil transepithelial migration in a basal-to-apical direction, and this occurred independently of the cytokine location, but depended upon intact metabolic capacity of the A549 cells. These data suggest that the mechanisms important for neutrophil transepithelial migration in response to classic chemoattractants differ from those important for migration in response to inflammatory cytokines.

UI MeSH Term Description Entries
D007975 Leukotriene B4 The major metabolite in neutrophil polymorphonuclear leukocytes. It stimulates polymorphonuclear cell function (degranulation, formation of oxygen-centered free radicals, arachidonic acid release, and metabolism). (From Dictionary of Prostaglandins and Related Compounds, 1990) 5,12-HETE,5,12-diHETE,LTB4,Leukotriene B,Leukotriene B-4,Leukotrienes B,5,12 HETE,5,12 diHETE,B-4, Leukotriene,Leukotriene B 4
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D016209 Interleukin-8 A member of the CXC chemokine family that plays a role in the regulation of the acute inflammatory response. It is secreted by variety of cell types and induces CHEMOTAXIS of NEUTROPHILS and other inflammatory cells. CXCL8 Chemokine,Chemokine CXCL8,Chemotactic Factor, Macrophage-Derived,Chemotactic Factor, Neutrophil, Monocyte-Derived,IL-8,Neutrophil-Activating Peptide, Lymphocyte-Derived,Neutrophil-Activating Peptide, Monocyte-Derived,AMCF-I,Alveolar Macrophage Chemotactic Factor-I,Anionic Neutrophil-Activating Peptide,Chemokines, CXCL8,Chemotactic Factor, Neutrophil,Granulocyte Chemotactic Peptide-Interleukin-8,IL8,Monocyte-Derived Neutrophil Chemotactic Factor,Neutrophil Activation Factor,Alveolar Macrophage Chemotactic Factor I,Anionic Neutrophil Activating Peptide,CXCL8 Chemokines,CXCL8, Chemokine,Chemokine, CXCL8,Chemotactic Factor, Macrophage Derived,Chemotactic Peptide-Interleukin-8, Granulocyte,Granulocyte Chemotactic Peptide Interleukin 8,Interleukin 8,Lymphocyte-Derived Neutrophil-Activating Peptide,Macrophage-Derived Chemotactic Factor,Monocyte-Derived Neutrophil-Activating Peptide,Neutrophil Activating Peptide, Lymphocyte Derived,Neutrophil Activating Peptide, Monocyte Derived,Neutrophil Chemotactic Factor,Neutrophil-Activating Peptide, Anionic,Peptide, Anionic Neutrophil-Activating

Related Publications

E J Carolan, and D A Mower, and T B Casale
August 1996, American journal of respiratory cell and molecular biology,
E J Carolan, and D A Mower, and T B Casale
September 1996, The Journal of experimental medicine,
E J Carolan, and D A Mower, and T B Casale
March 1995, American journal of respiratory cell and molecular biology,
E J Carolan, and D A Mower, and T B Casale
January 2007, Annual review of pathology,
E J Carolan, and D A Mower, and T B Casale
October 2017, Journal of immunology (Baltimore, Md. : 1950),
E J Carolan, and D A Mower, and T B Casale
October 1990, Journal of immunology (Baltimore, Md. : 1950),
E J Carolan, and D A Mower, and T B Casale
January 2006, Methods in molecular biology (Clifton, N.J.),
E J Carolan, and D A Mower, and T B Casale
August 2006, Annals of the New York Academy of Sciences,
E J Carolan, and D A Mower, and T B Casale
October 1997, BioEssays : news and reviews in molecular, cellular and developmental biology,
E J Carolan, and D A Mower, and T B Casale
November 2000, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!