Varicella-zoster virus gene 21: transcriptional start site and promoter region. 1998

R J Cohrs, and M Barbour, and D H Gilden
Department of Neurology, University of Colorado Health Sciences Center, Denver 80262, USA. randall.cohrs@uchsc.edu

Varicella-zoster virus (VZV) causes chicken pox (varicella), becomes latent in dorsal root ganglia, and reactivates decades later to cause shingles (zoster). During latency, the entire VZV genome is present in a circular form, from which genes 21, 29, 62, and 63 are transcribed. Immediate-early (IE) VZV genes 62 and 63 encode regulators of virus gene transcription, and VZV gene 29 encodes a major DNA-binding protein. However, little is known about the function of VZV gene 21 or the control of its transcription. Using primer extensions, we mapped the start of VZV gene 21 transcription in VZV-infected cells to a single site located at -79 nucleotides (nt) with respect to the initiation codon. To identify the VZV gene 21 promoter, the 284-bp region of VZV DNA separating open reading frames (ORFs) 20 and 21 was cloned upstream from the chloramphenicol acetyltransferase gene. In transient-transfection assays, the VZV gene 21 promoter was transactivated in VZV-infected, but not uninfected, cells. Further, the protein encoded by ORF 62 (IE62), but not those encoded by VZV ORFs 4, 10, 61, and 63, transactivates the VZV gene 21 promoter. By use of transient-cotransfection assays in conjunction with 5' deletions of the VZV gene 21 promoter, a 40-bp segment was shown to be responsible for the transactivation of the VZV gene 21 promoter by IE62. This region was located at -96 to -56 nt with respect to the 5' start of gene 21 transcription.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014645 Herpesvirus 3, Human The type species of VARICELLOVIRUS causing CHICKENPOX (varicella) and HERPES ZOSTER (shingles) in humans. Chickenpox Virus,Herpes zoster Virus,Ocular Herpes zoster Virus,VZ Virus,Varicella-Zoster Virus,HHV-3,Herpesvirus 3 (alpha), Human,Herpesvirus Varicellae,Human Herpesvirus 3,Chickenpox Viruses,Herpes zoster Viruses,VZ Viruses,Varicella Zoster Virus,Varicella-Zoster Viruses,Varicellae, Herpesvirus

Related Publications

R J Cohrs, and M Barbour, and D H Gilden
April 2000, Journal of virological methods,
R J Cohrs, and M Barbour, and D H Gilden
December 1995, Neurology,
R J Cohrs, and M Barbour, and D H Gilden
December 1995, Neurology,
R J Cohrs, and M Barbour, and D H Gilden
July 2002, Journal of virology,
R J Cohrs, and M Barbour, and D H Gilden
August 1998, Journal of virology,
R J Cohrs, and M Barbour, and D H Gilden
December 1990, The Journal of general virology,
R J Cohrs, and M Barbour, and D H Gilden
December 1995, Neurology,
R J Cohrs, and M Barbour, and D H Gilden
January 2000, Intervirology,
Copied contents to your clipboard!