Developmental and sensory-dependent changes of phosphoinositide-linked metabotropic glutamate receptors. 1997

S N Reid, and C Romano, and T Hughes, and N W Daw
Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, Connecticut 06520-8061, USA. reiddrs@aol.com

Metabotropic glutamate receptors (mGluRs) can modulate synaptic transmission, and there is evidence that phosphoinositide (PI)-linked mGluRs may be involved in sensory-dependent plasticity during the development of cat visual cortex. Consequently, we asked the questions: Where are the PI-linked mGluRs (mGluR1alpha and mGluR5) in the visual cortex? Does the quantity and distribution of these receptors change in the cat visual cortex during postnatal development, and are these features sensory-dependent? We found that the quantity of mGluR1alpha decreases with age, whereas the laminar distribution of mGluR1alpha remains the same. Quantity of mGluR5 also decreases, but the laminar distribution of mGluR5 changes during development. The pattern and timing of the mGluR5 change in distribution follow the development of geniculocortical afferents. Immunostaining indicates that reduction of receptor occurs mainly in layers V-VI for mGluR1alpha and outside layer IV for mGluR5. Dark-rearing postpones the laminar change of mGluR5 and produces an increased level of mGluR5 between postnatal 1.5-6 weeks of age but has no significant effect on the mGluR1alpha distribution or the mGluR1alpha quantity. These results suggest that mGluR1alpha and mGluR5 are involved in different aspects of cortical development. The mGluR5 is more likely to be involved in sensory-dependent events than mGluR1alpha. The lack of developmental correlation between mGluR quantities and the critical period for ocular dominance plasticity also suggests that other factors besides mGluR quantities are important for ocular dominance plasticity.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003624 Darkness The absence of light. Darknesses
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

S N Reid, and C Romano, and T Hughes, and N W Daw
November 1994, European journal of pharmacology,
S N Reid, and C Romano, and T Hughes, and N W Daw
February 2005, Gastroenterology,
S N Reid, and C Romano, and T Hughes, and N W Daw
April 2013, Proceedings of the National Academy of Sciences of the United States of America,
S N Reid, and C Romano, and T Hughes, and N W Daw
August 1991, Brain research. Developmental brain research,
S N Reid, and C Romano, and T Hughes, and N W Daw
February 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S N Reid, and C Romano, and T Hughes, and N W Daw
February 2007, Amino acids,
S N Reid, and C Romano, and T Hughes, and N W Daw
November 2006, Cell and tissue research,
S N Reid, and C Romano, and T Hughes, and N W Daw
December 2002, Pharmacology, biochemistry, and behavior,
S N Reid, and C Romano, and T Hughes, and N W Daw
September 2002, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!