Streptococcal histone-like protein: primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells. 1998

M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 14214, USA. mstinson@ubmedb.buffalo.edu

In addition to its role in the nucleoid, the histone-like protein (HlpA) of Streptococcus pyogenes is believed to act as a fortuitous virulence factor in delayed sequelae by binding to heparan sulfate-proteoglycans in the extracellular matrix of target organs and acting as a nidus for in situ immune complex formation. To further characterize this protein, the hlpA genes were cloned from S. pyogenes, S. gordonii, S. mutans, and S. sobrinus, using PCR amplification, and sequenced. The encoded HlpA protein of S. pyogenes has 91 amino acids, a predicted molecular mass of 9,647 Da, an isoelectric point of 9.81, and 90% to 95% sequence identity with HlpA of several oral streptococci. The consensus sequence of streptococcal HlpA has 69% identity with the consensus sequence of the histone-like HB protein of Bacillus species. Oral viridans group streptococci, growing in chemically defined medium at pH 6.8, released HlpA into the milieu during stationary phase as a result of limited cell lysis. HlpA was not released by these bacteria when grown at pH 6.0 or below. S. pyogenes did not release HlpA during growth in vitro; however, analyses of sera from 155 pharyngitis patients revealed a strong correlation (P < 0.0017) between the production of antibodies to HlpA and antibodies to streptolysin O, indicating that the histone-like protein is released by group A streptococci growing in vivo. Extracellular HlpA formed soluble complexes with lipoteichoic acid in vitro and bound readily to heparan sulfate on HEp-2 cell surfaces. These results support a potential role for HlpA in the pathogenesis of streptococcus-induced tissue inflammation.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010940 Plant Proteins Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which PLANT PROTEINS, DIETARY is available. Plant Protein,Protein, Plant,Proteins, Plant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
April 1980, The Journal of infectious diseases,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
August 1995, Biochimica et biophysica acta,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
July 1980, The Journal of biological chemistry,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
February 1983, Journal of bacteriology,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
May 1975, The Journal of experimental medicine,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
August 2013, Journal of endodontics,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
March 1979, Infection and immunity,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
January 1979, Journal of immunology (Baltimore, Md. : 1950),
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
November 1994, Journal of dental research,
M W Stinson, and R McLaughlin, and S H Choi, and Z E Juarez, and J Barnard
January 1979, The Journal of infectious diseases,
Copied contents to your clipboard!