High density lipoprotein subclasses inhibit low density lipoprotein oxidation. 1997

K Singh, and R Chander, and N K Kapoor
Division of Biochemistry, Central Drug Research Institute, Lucknow, India.

It has been reported earlier that high density lipoprotein (HDL) is a scavenger of superoxide anions, hydroxyl radicals (OH-) and behaves like superoxide dismutase. In the present investigation, we have studied the effect of HDL subclasses: HDL2 and HDL3 on non enzymatically induced oxidation of low density lipoprotein (LDL) by Fe2+ and sodium ascorbate. Both HDL2 and HDL3 showed protection against the oxidative degradation of LDL-lipids, measured as thiobarbituric acid reactive substance, lipid hydroperoxide and conjugated diene. Oxidized LDL was more electronegative, as evidenced by the increase in relative electrophoretic mobility(REM) on agarose gel. HDL3 significantly protected LDL apoprotein as assessed by reversal of REM after oxidation. HDL2 and HDL3 significantly inhibited the generation of OH- in nonenzymic systems in vitro. However, HDL2 was more active against enzymic formation of OH- as compared to HDL3. Alpha-tocopherol could protect LDL lipids and apoprotein components by Fe2+ mediated oxidation but the effects were lower than HDL subclasses. Our findings suggest that HDL subclasses, the potent scavenger of oxygen derived free radicals, play an important role to prevent the oxidative modifications in LDL.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005296 Ferrous Compounds Inorganic or organic compounds that contain divalent iron. Compounds, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium
D015227 Lipid Peroxidation Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor. Lipid Peroxidations,Peroxidation, Lipid,Peroxidations, Lipid
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical

Related Publications

K Singh, and R Chander, and N K Kapoor
June 1994, Current opinion in lipidology,
K Singh, and R Chander, and N K Kapoor
January 2009, Clinical laboratory,
K Singh, and R Chander, and N K Kapoor
February 2006, Natural product research,
K Singh, and R Chander, and N K Kapoor
January 2006, Natural product research,
K Singh, and R Chander, and N K Kapoor
January 2007, Fitoterapia,
K Singh, and R Chander, and N K Kapoor
December 2013, Archives of pathology & laboratory medicine,
K Singh, and R Chander, and N K Kapoor
September 1986, The American journal of medicine,
K Singh, and R Chander, and N K Kapoor
May 2004, Journal of women's health (2002),
K Singh, and R Chander, and N K Kapoor
April 1997, Journal of lipid research,
Copied contents to your clipboard!